Spatio-Temporal Attention-Based Neural Network for Credit Card Fraud Detection

Abstract

Credit card fraud is an important issue and incurs a considerable cost for both cardholders and issuing institutions. Contemporary methods apply machine learning-based approaches to detect fraudulent behavior from transaction records. But manually generating features needs domain knowledge and may lay behind the modus operandi of fraud, which means we need to automatically focus on the most relevant patterns in fraudulent behavior. Therefore, in this work, we propose a spatial-temporal attention-based neural network (STAN) for fraud detection. In particular, transaction records are modeled by attention and 3D convolution mechanisms by integrating the corresponding information, including spatial and temporal behaviors. Attentional weights are jointly learned in an end-to-end manner with 3D convolution and detection networks. Afterward, we conduct extensive experiments on real-world fraud transaction dataset, the result shows that STAN performs better than other state-of-the-art baselines in both AUC and precision-recall curves. Moreover, we conduct empirical studies with domain experts on the proposed method for fraud post-analysis; the result demonstrates the effectiveness of our proposed method in both detecting suspicious transactions and mining fraud patterns.

Publication
In 2020 AAAI 34th Conference on Artificial Intelligence
Click the Cite button above to import publication metadata into your reference management software.
Sheng Xiang
Sheng Xiang
Ph.D. Candidate

My research interests include learning-based graph simulation for data management and spatio-temporal and uncertain data mining.