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ABSTRACT
Spoofing detection in financial trading is crucial, especially for
identifying complex behaviors such as conspiracy spoofing. Tra-
ditional machine-learning approaches primarily focus on isolated
node features, often overlooking the broader context of intercon-
nected nodes. Graph-based techniques, particularly Graph Neural
Networks (GNNs), have advanced the field by leveraging relational
information effectively. However, in real-world spoofing detection
datasets, trading behaviors exhibit dynamic, irregular patterns. Ex-
isting spoofing detection methods, though effective in some sce-
narios, struggle to capture the complexity of dynamic and diverse,
evolving inter-node relationships. To address these challenges, we
propose a novel framework called the Generative Dynamic Graph
Model (GDGM), which models dynamic trading behaviors and the
relationships among nodes to learn representations for conspir-
acy spoofing detection. Specifically, our approach incorporates the
generative dynamic latent space to capture the temporal patterns
and evolving market conditions. Raw trading data is first converted
into time-stamped sequences. Then we model trading behaviors
using the neural ordinary differential equations and gated recur-
rent units, to generate the representation incorporating temporal
dynamics of spoofing patterns. Furthermore, pseudo-label genera-
tion and heterogeneous aggregation techniques are employed to
gather relevant information and enhance the detection performance
for conspiratorial spoofing behaviors. Experiments conducted on
spoofing detection datasets demonstrate that our approach outper-
forms state-of-the-art models in detection accuracy. Additionally,
our spoofing detection system has been successfully deployed in
one of the largest global trading markets, further validating the
practical applicability and performance of the proposed method.
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1 INTRODUCTION
Spoofing transaction [31], commonly known as “deceptive trading”
in financial markets, represents a sophisticated form of market
manipulation characterized by strategic order placement. As il-
lustrated in Figure 1, traders intentionally submit non-executable
orders (e.g., large-volume bids or asks in a small period) to fabricate
artificial market signals about supply/demand equilibrium. This
manipulative practice distorts asset pricing mechanisms for stocks,
currencies, and derivatives by creating illusory liquidity or volatility
patterns that enable illicit gains through subsequent counter-trades
[4]. Functioning as a deceptive market intervention, spoofing behav-
ior erodes market fairness and efficiency, contributing to systemic
risks and substantial investor losses [3, 12]. The proliferation of
algorithmic trading platforms has exponentially amplified both the
occurrence rate and economic consequences of spoofing activities,
compelling global regulators to implement stringent surveillance
frameworks and punitive measures [13, 32]. Consequently, devel-
oping advanced detection paradigms for spoofing transactions has
emerged as a paramount research priority across financial trading
institutions and academic communities.

Early systems for detecting spoofing in financial transactions
relied heavily on rule-based methods, where alerts were triggered
by predefined behavioral thresholds [39, 41–43]. While effective
in static scenarios, these methods lacked the adaptability needed
for the evolving tactics of fraudsters. Machine learning and deep
learning approaches have since emerged as more dynamic solu-
tions, offering data-driven methodologies that continuously refine
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Figure 1: A typical example of spoofing transactions. Traders
place deceptive sell (ask) or buy (bid) orders without exe-
cution to influence the market price by misleading other
traders about the market demand or supply.

detection capabilities [2]. Techniques such as convolutional neu-
ral networks (CNNs) [17], recurrent neural networks (RNNs) [40],
and attention mechanisms [11, 44] have been utilized to capture
complex transaction patterns, marking significant progress in fraud
detection [50]. However, these methods often fall short of captur-
ing the intricate relationships and dynamics within interconnected
transactions, ignoring the rich information from relations.

Graph-basedmethods, particularly GraphNeural Networks, have
transformed fraud detection by effectively leveraging relational
structures and connectivity patterns among transactions [10]. GNNs,
such as CARE-GNN and SemiGNN, have demonstrated notable suc-
cess in modeling dependencies across nodes and incorporating both
relational and temporal information for improved detection perfor-
mance [15, 38]. Recent advancements have introduced models like
RTG-Trans, which integrates deep graph learning with temporal
analysis to enhance spoofing detection accuracy [23]. Additionally,
GPEGNN combines local and global community features to better
identify and analyze conspiracy spoofing behaviors [24].

Despite the significant progress made by machine learning and
graph-based approaches in detecting spoofing trading, several limi-
tations remain that hinder their applicability to real-world financial
trading data. First, the temporal relationships between transac-
tions are highly irregular, with varying distances and dependencies
that cannot be effectively modeled by trivial recurrent neural net-
works (RNNs) or standard transformer architectures. These meth-
ods rely on assumptions of regular or sequential data patterns,
e.g., words and image patches, making them ill-suited for captur-
ing the dynamic and erratic nature of trading behaviors. Second,
the structural relationships in transaction networks exhibit inher-
ent heterogeneity, as the interactions between transactions form
non-homophily graph structures [48]. Conventional Graph Neural
Networks (GNNs), such as Graph Convolutional Networks (GCNs)
and Graph Attention Networks (GATs), are limited in their ability to
distinguish between non-homophily graph representations, leading
to reduced performance when analyzing the diverse and complex
patterns required for conspiracy spoofing detection.

To address these challenges, we proposed Generative Dynamic
Graph Model (GDGM). Specifically, our method comprises four
steps: First, we convert raw trading data into structured time-
stamped sequences for generative dynamic data encoding. Dur-
ing encoding, we introduce neural ordinary differential equation
(Neural ODE) as the latent space generative method to obtain tem-
poral representations from transaction sequences. Second, we in-
troduce a Transaction Graph Pseudo-Label Generation mechanism
to assign pseudo-labels for unlabeled nodes, thereby improving
the model’s capability to better identify patterns associated with
conspiracy spoofing transactions. Finally, heterogeneous aggre-
gation integrates different types of information across the graph,
enabling themodel to capture the diverse and non-homophily graph
structures inherent in trading data. The experiments conducted on
real-world spoofing detection datasets demonstrate that GDGM
achieves superior detection performance when compared to ex-
isting state-of-the-art methods. Furthermore, the deployment of
our system in one of the largest global trading markets, coupled
with a case study, highlights the practical effectiveness of GDGM
in addressing conspiracy spoofing detection.

The contributions of our work can be summarized as follows:
• We transform raw trading data into time-stamped sequences.
Then, by utilizing generative neural ordinary differential
equations, our method effectively captures temporal depen-
dencies in transaction representations.

• To handle the non-homophily and diverse relationships in
trading data, we generate pseudo-labels and design a hetero-
geneous aggregation mechanism. This mechanism enables
our model to adaptively integrate relational information
across different types of connections in trading data.

• Experimental results on real-world spoofing detection datasets
demonstrate that GDGM outperforms state-of-the-art mod-
els in terms of detection accuracy. Furthermore, our method
has been successfully deployed in one of the largest global
trading markets, and a case study highlights its superior
capability in uncovering spoofing patterns.

2 RELATEDWORKS
This section reviews existing methods for spoofing detection and
graph learning on financial transactions, highlighting their key
contributions and main limitations.

2.1 Spoofing Detection
Since spoofing poses a major threat to the stability of financial mar-
kets, a variety of detection methodologies have been introduced in
recent years to detect this issue. Early approaches mainly relied on
statistical analysis of transaction behaviors to identify spoofing pat-
terns [6]. Machine learning-based methods, such as Linear Regres-
sion [18], Decision Tree [16, 46] and Multi-Layer Perceptron [21]
were broadly implemented in real-world spoofing detection sys-
tems. As spoofing tactics evolved, researchers started to adopt deep
learning techniques, such as recurrent neural networks (RNNs) and
attention-based neural networks, to capture more complex trading
patterns[1, 50]. While these approaches offered advancements, they
still had limitations in capturing the intricate interactions within
transactions. More recently, graph neural networks (GNNs) have
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gained attention for their effectiveness in spoofing detection by
leveraging inter-connected behavior within transaction graphs [15].
For instance, RTG-Trans combines deep graph learning with tem-
poral analysis to enhance spoofing detection [23]. However, many
GNN models focus primarily on local context, relying on adjacent
nodes, which restricts their ability to identify complex, coordinated
spoofing activities that require a global perspective on transaction
relationships. Apart from graph-based techniques, other approaches
have also been developed to tackle spoofing detection from different
angles. Rule-based algorithms, for instance, set specific parameters
to identify suspicious trading patterns. A good example of this
can be found in studies analyzing transactions across stocks in
indices like the Ibovespa, as shown in [30]. Moreover, researchers
have also explored spoofing from a micro-structural perspective.
They have introduced variables such as multilevel imbalances in
price action and delved into the optimization strategies that po-
tential spoofers might employ, as described in [45]. Despite these
continuous advancements, existing methods still struggle when it
comes to capturing the temporal relationships in trading behaviors.
These relationships are inherently dynamic and do not fit well with
traditional RNNs or transformer-based approaches.

2.2 Graph Learning on Financial Transaction
Graph-based machine learning has become instrumental in ana-
lyzing financial transactions and detecting fraudulent activities,
drawing on its effectiveness in fields such as image processing, nat-
ural language processing, and knowledge graph construction[5, 9,
14, 20, 49]. Within financial applications, graph models have proven
adept at addressing complex tasks like credit risk assessment [27]
and financial fraud detection [26]. For example, vulnerable nodes
on the guarantee loan network can be detected by graph models [7].
One significant challenge in credit risk assessment for small and
medium-sized enterprises is the limited sample size. To address
this, Wang et al. proposed an adaptive heterogeneous multi-view
graph learning model, integrating multiple data perspectives to
aggregate heterogeneous information for a comprehensive evalu-
ation of credit risks[37]. Based on the idea of leveraging diverse
data sources, SemiGNN utilizes both labeled and unlabeled data
to capture dependencies across data views and neighboring nodes
through a hierarchical attention mechanism [38]. Another major
challenge is that fraudulent activities often involve sophisticated
tactics such as disguising features and relationships within the
data. To address this, Dou et al. introduced CARE-GNN, which
incorporates a label-aware similarity measure and a reinforcement-
learning-driven neighbor selection strategy, dynamically focusing
on relevant nodes based on label information to improve detection
accuracy[15]. In addition to relational data, temporal patterns play
a crucial role in identifying anomalies [28]. GADBench offers a
benchmark framework for sequence-based anomaly detection, cap-
turing user behavior patterns over time, facilitating the detection
of anomalies within temporal transaction data[33]. While these
approaches address challenges in fraud detection broadly, they ne-
glect the specific requirements of spoofing detection, particularly
the need to distinguish between non-homophily graph structures.
To date, no dedicated solutions have been proposed to model the
heterogeneous graph relationships unique to spoofing scenarios.

Table 1: Notations used in this paper.

Symbol Definition
𝑛 the total number of nodes
𝑚 the total number of edges
𝑟 the number of relationships in graph �̃�
𝑑 the number of dimension
𝑍𝑖 the transformed representation using

the 𝑖-th wavelet kernel
𝐻 the comprehensive node representation

aggregated from 𝑍0 to 𝑍𝐶
𝑝𝑖 the anomaly probability for node 𝑖

𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} the set of node features
𝑦𝑖 the pseudo-label for node 𝑖

3 METHODOLOGY
In this section, according to Figure 2, the proposed framework,
GDGM, consists of four main components: (1) Generative Dynamic
Data Encoding, (2) Pseudo-Labeled Graph Generation, (3) Hetero-
geneous Graph Attention, and (4) Classification. These components
work together to capture generative dynamics data representations
and heterogeneous graph relationships in financial transaction data,
effectively modeling conspiracy spoofing behaviors.

3.1 Generative Dynamic Data Encoding
To effectively model the irregular temporal dynamics inherent in
financial transaction data, especially in spoofing detection, we first
explicitly leverage the timestamp of each transaction. Then, we em-
ploy a generative representation learning method, namely Neural
Ordinary Differential Equation-based Recurrent Neural Network
(ODERNN). This approach combines the continuous-time genera-
tive modeling capability of ODEs with the sequential representation
power of GRU cells. The encoding process captures both temporal
irregularities and sequential dependencies in the trading data.

3.1.1 Neural ODE Dynamics. We set the initial hidden state ℎ(0)
as zero tensors. Then, the temporal evolution of the hidden state
ℎ(𝑡) in the ODE module is generated and governed by:

𝑑ℎ(𝑡)
𝑑𝑡

= 𝑓𝜃 (ℎ(𝑡), 𝑡), (1)

where 𝑓𝜃 is a neural network parameterized by 𝜃 that defines the
dynamics of the system. The hidden state ℎ(𝑡) at a future time 𝑡1 is
obtained by solving the initial value problem:

ℎ(𝑡1) = ℎ(𝑡0) +
∫ 𝑡1

𝑡0

𝑓𝜃 (ℎ(𝑡), 𝑡) 𝑑𝑡, (2)

which is approximated numerically using the ODE solver:

ℎ(𝑡1) = ODEInt(𝑓𝜃 , ℎ(𝑡0), [𝑡0, 𝑡1]), (3)

where the function ODEInt computes the current hidden state, i.e.,
solution of the ODE over the time interval [𝑡0, 𝑡1].

3.1.2 GRU-based Sequential Updates. For each transaction sequence,
we initialize the hidden state as ℎ0. Then we iteratively update it
using the observations x𝑖 at each time step with a gated recurrent
unit (GRU) [8, 47]. The sequence update combines ODE dynamics
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Figure 2: The proposed Generative Dynamic Graph Model (GDGM) architecture for Conspiracy Spoofing Detection. The first
part is the historical transaction encoding of input time series data, which builds the embedding of irregular transaction series.
The second part is the temporal graph attention. The third part is the heterogeneous graph attention layer, which aggregates
the information for different types of neighbors. The fourth part is the classification layer, which is a multi-layer perception
that gives the prediction of whether this transaction is spoofing.

with a GRU to handle the final observations, which is formulated
as:

ℎ(𝑡 𝑗 ) = ODEInt(𝑓𝜃 , ℎ(𝑡 𝑗−1), [𝑡 𝑗−1, 𝑡 𝑗 ]), (4)

ℎ 𝑗 = GRUCell(x𝑗 , ℎ(𝑡 𝑗 )), (5)

where ℎ(𝑡 𝑗 ) is the hidden state after solving the ODE, and ℎ 𝑗 is the
updated state incorporating the observation x𝑗 via the GRU cell.

3.1.3 Mini-batch Encoding. Given a batch of transaction sequences,
the model processes each transaction independently. The final hid-
den states ℎ𝑖,𝑇 for all transactions are aggregated into a batch rep-
resentation, which is formulated as follows:

𝐻batch = {ℎ1,𝑇 , ℎ2,𝑇 , . . . , ℎ𝑁,𝑇 }, (6)

where ℎ𝑖,𝑇 represents the last hidden state of the 𝑖-th sequence, and
𝑁 is the batch size. The last hidden state will be used as the input
of the GNN-based classifier. Overall, the neural ODE is responsible
for modeling dynamics and generating hidden variable candidates.
Then the gated recurrent unit cells are leveraged to generate neural
representations incorporated with temporal information.

3.2 Pseudo-Labeled Graph Generation
To effectively utilize unlabeled data, we propose a dynamic labeling
mechanism integrated with the Pre-Trained Beta Wavelet Graph
Neural Network (BWGNN) [34]. Leveraging its robust classification
capabilities, BWGNN serves as the backbone for generating and
refining pseudo labels, ensuring an effective and adaptive labeling
process that enhances the model’s robustness and generalization.

The process begins with the transformation of the node features
𝑋 through a Multi-Layer Perceptron (MLP), which captures the
intrinsic node characteristics. The raw node features 𝑋raw were
concatenated by the last hidden state𝐻batch of the encodingmodule,
which is formulated as: 𝑋 = 𝑋raw | |𝐻batch. These features are then
processed by a set of Beta wavelet kernelsW𝑖,𝐶−𝑖 , each designed to
extract spectral information at specific frequency scales, resulting

in transformed representations 𝑍𝑖 :

𝑍𝑖 = W𝑖,𝐶−𝑖 (MLP(𝑋 )), 𝑖 ∈ {0, 1, . . . ,𝐶}. (7)

The outputs from the wavelet kernels are aggregated into a
comprehensive node representation 𝐻 :

𝐻 = AGG( [𝑍0, 𝑍1, . . . , 𝑍𝐶 ]), (8)

where AGG combines multi-scale spectral features. This representa-
tion is further processed by another MLP with a Sigmoid activation
to compute anomaly probabilities 𝑝𝑖 for each node:

𝑝𝑖 = Sigmoid(MLP(𝐻 )) . (9)

Based on these probabilities, pseudo labels are generated by
applying a threshold 𝑧, which is formulated as follows:

𝑦𝑖 =

{
1 if 𝑝𝑖 > 𝑧

0 otherwise.
(10)

The transaction labeling mechanism provides a fully labeled
graph for each batch of nodes to have graph data for heterogeneous
graph attention during the training process.

3.3 Heterogeneous Graph Attention
In multi-relational graphs, redundant features can hinder the learn-
ing process by introducing noise. To address this challenge, we
adopt a heterogeneous graph attention mechanism that consists
of two main components: intra-attention and inter-attention.
This approach efficiently handles the complexity of multi-relational
transaction graphs by attending to information both within indi-
vidual nodes and between different types of nodes, ensuring all
meaningful relationships are captured.

3.3.1 Intra-Attention. The intra-attention mechanism is designed
to consolidate features from neighboring nodes connected by the
same relation type. This ensures that the model can choose impor-
tant neighbors and capture shared characteristics within each type
of node. The process includes the following steps:
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1. Attention-based Neighbor Aggregation within each relation:

ℎ
′,𝑙
𝑣,𝑟,∗ =

∑︁
𝑢∈N𝑟,∗ (𝑣)

𝛼𝑣𝑢,𝑟ℎ
𝑙−1
𝑢 (11)

The attention weights 𝛼𝑣𝑢,𝑟 are calculated using the softmax
function to normalize the importance of neighboring nodes:

𝛼𝑣𝑢,𝑟 =

exp
(
LeakyReLU

(
𝑎⊤𝑟 ·

[
𝑊 𝑙

𝑟 ℎ
𝑙−1
𝑣 ∥𝑊 𝑙

𝑟 ℎ
𝑙−1
𝑢

] ))
∑
𝑘∈N𝑟,∗ (𝑣) exp

(
LeakyReLU

(
𝑎⊤𝑟 ·

[
𝑊 𝑙

𝑟 ℎ
𝑙−1
𝑣 ∥𝑊 𝑙

𝑟 ℎ
𝑙−1
𝑘

] ))
(12)

Here, 𝑎𝑟 is a learnable vector specific to the relation 𝑟 ,𝑊 𝑙
𝑟 is a

relation-specific weight matrix, and ∥ denotes concatenation.
2. Feature Update using attended neighbor features:

ℎ𝑙𝑣,𝑟,∗ = ReLU
(
𝑊 𝑙

intra,𝑟 ·
(
ℎ𝑙−1𝑣 ∥ ℎ′,𝑙𝑣,𝑟,∗

))
(13)

where𝑊 𝑙
intra,𝑟 is the learnable weight matrix for intra-attention at

layer 𝑙 , ℎ𝑙−1𝑣 represents the central node’s features at the previous
layer, ℎ′,𝑙𝑣,𝑟,∗ is the aggregated feature from the neighbors under rela-
tion 𝑟 , and ReLU introduces non-linearity to the updated features.

The intra-attention mechanism focuses on leveraging homoge-
neous node relationships among the same type of nodes to refine
the neighbor node feature representations.

3.3.2 Inter-Attention. After introducing intra-attention, the model
proceeds to inter-attention, where it collects information across
different types of nodes. The process is as follows: (1) Features
within each type are aggregated using a mean operation, ensuring
each type’s features are combined based on their relationships; (2)
The attended features from different types of nodes are then passed
through an attention mechanism to compute the attention weights,
allowing the model to focus on the most informative relationships
between the central node and different types of relationships.

The inter-attention process is performed as follows:
1. Mean Aggregation within each relation:

ℎ
′,𝑙
𝑣,𝑟,𝑔 = Aggmean (ℎ𝑙−1𝑢 ), ∀𝑢 ∈ N𝑟,𝑔 (𝑣) (14)

where N𝑟,𝑔 (𝑣) represents the set of neighboring nodes of 𝑣 con-
nected by relation 𝑟 and group 𝑔, Aggmean denotes the function to
compute the mean values of neighboring node features ℎ𝑙−1𝑢 , and
ℎ𝑙−1𝑢 is the feature of neighbor 𝑢 at layer 𝑙 − 1.

2. Inter-Attention between different relations:

ℎ𝑙𝑣 =
∑︁
𝑟

∑︁
𝑔

𝛼𝑙𝑟,𝑔ℎ
𝑙
𝑣,𝑟,𝑔 (15)

where ℎ𝑙𝑣 is the updated feature of the central node 𝑣 at layer 𝑙 ,
ℎ𝑙𝑣,𝑟,𝑔 is the feature aggregated from relation 𝑟 and group 𝑔, and 𝛼𝑙𝑟,𝑔
is the attention weight for relation 𝑟 and group 𝑔. The attention
weights 𝛼𝑙𝑟,𝑔 are computed using the softmax function:

𝛼𝑙𝑟,𝑔 =
exp(𝜔𝑙

𝑟,𝑔)∑
𝑚 exp(𝜔𝑙

𝑟,𝑔)
(16)

Here, 𝜔𝑙
𝑟,𝑔 is the unnormalized attention score for relation 𝑟 and

group 𝑔, and
∑
𝑚 normalizes the scores across all relations and

groups. The weight 𝜔𝑙
𝑟,𝑔 is determined by the interaction between

the node’s features and the attended features from each relation:

𝜔𝑙
𝑟,𝑔 = 𝑞𝑇 · tanh(𝑊 𝑙

inter 1ℎ
𝑙−1
𝑣 +𝑊 𝑙

inter 2ℎ
𝑙
𝑣,𝑟,𝑔) (17)

In this equation, 𝑞 is a learnable parameter vector that projects
the interaction into a scalar, 𝑊 𝑙

inter 1 and 𝑊 𝑙
inter 2 are learnable

weight matrices for the central node and the relation-specific fea-
tures, respectively, and tanh introduces non-linearity to the inter-
action. The inter-attention mechanism ensures that information
is aggregated across relations and groups, enabling the model to
capture complex dependencies between different types of nodes
and relations. After both intra-attention and inter-attention, the
final node representation is obtained by concatenating the features
from all relational representations with the central node’s feature.
This step ensures that the model incorporates information from
both the central node and the different relationships:

ℎfinal𝑣 = ℎ𝑙𝑣 ∥ concat
(
{ℎ𝑙𝑣,𝑟,𝑔}𝑟,𝑔

)
(18)

3.4 Optimization Objective
After the graph attention process, the embedding ℎfinal𝑣 obtained
from the final layer is input into a Multilayer Perceptron (MLP),
which produces a classification score 𝑝𝑣 representing the proba-
bility of node 𝑣 belonging to each category. The probabilities are
computed using the softmax function, enabling the model to esti-
mate the likelihood for each class. The training process minimizes
the cross-entropy loss, which is defined as:

L = −
∑︁
𝑣∈V

𝐶∑︁
𝑐=1

𝑦𝑣,𝑐 log 𝑝𝑣,𝑐 , (19)

where 𝑦𝑣,𝑐 represents the ground-truth label for node 𝑣 in class 𝑐 ,
𝑝𝑣,𝑐 is the predicted probability, and𝐶 is the total number of classes.

At the end of each training epoch, for spoofing detection, i.e.,
binary classification tasks, a threshold 𝑧 is often used for decision-
making, where the prediction is determined as follows:

𝑦𝑣 =

{
1 if 𝑝𝑣 > 𝑧,

0 otherwise.
(20)

This binary decision and prediction probability are used for
model performance comparison experiments and building real-
world spoofing detection systems.

4 EXPERIMENTS
In this section, we first show the detail of experimental settings.
Then we report the performance comparison results on spoofing de-
tection task. After that, we introduce the ablation study, parameter
sensitivity, case studies, and implementations.

4.1 Experimental Settings
4.1.1 Datasets. We have created a new dataset called Spoofing De-
tection Dataset, consisting of 40,072 transaction records collected
from our partners between January 5, 2018, and November 14, 2018.
The dataset contains 49 feature dimensions, which can be catego-
rized into four types of information: order-related details (e.g., order
price, order balance, and order date), market and price data (e.g.,
today’s trading volume and value), as well as order positions and
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profit or loss figures. The ground truth labels are based on cases
reported by traders and verified by financial domain experts. Trans-
actions are labeled as 1 if identified as fraudulent, and 0 otherwise.

During the data preprocessing stage, we remove irrelevant columns,
such as trader ID and customer ID. Then, the features are normal-
ized based on the train set statistics. To construct the graph, each
transaction is treated as a node. Edges between nodes are estab-
lished using a sliding window based on the transaction date.

4.1.2 ComparedMethods. The compared methods can be classified
into two parts: (1) Traditional learning-based methods; and (2)
Advanced Spoofing Detection Methods. The traditional learning-
basedmethods include Logistic Regression (LR) [18], Random Forest
(RF) [46], Adaboost [25], Gradient Boosting Decision Tree (GBDT)
[16], Hybrid Multi-layer Perceptron (HMLP) [21], Long Short Term
Memory (LSTM) [19], and BiTransformer [35], all of which are
implemented with their default hyperparameter settings.

For the advanced spoofing detection methods, we compare with
EigenGCN [29], a graph convolutional network designed for trans-
action relationship learning; RetaGNN [22], a relational temporal
attention-based graph neural network; GRU-DM [36], a Gated Re-
current Unit framework for spoofing detection using market indi-
cators; RTG-Trans [23], a temporal gating method for detecting dy-
namic interactions within spoofing detection graphs; GPEGNN [24],
a multi-layer graph attention-based method for local and global
context learning; and GDGM, our proposed method, with hyperpa-
rameter settings detailed in section 4.4.

4.1.3 Evaluation Metrics. To evaluate the the performance of our
model on spoofing detection, we leverage five widely recognized
metrics to assess: Area Under the ROC Curve (AUC), Precision,
Recall, F1 Score and Accuracy. The AUC measures evaluates the
model’s ability to differentiate between classes at various thresh-
old settings. Precision (𝑃 ) measures the proportion of true posi-
tive predictions among all positive predictions. It is computed as:
𝑃 =

𝑁𝑇𝑃

𝑁𝑇𝑃+𝑁𝐹𝑃
where 𝑁𝑇𝑃 represents the number of true positives,

and 𝑁𝐹𝑃 represents the number of false positives. Recall (𝑅) quan-
tifies the model’s ability to identify all true positive instances. It
is calculated as: 𝑅 =

𝑁𝑇𝑃

𝑁𝑇𝑃+𝑁𝐹𝑁
where 𝑁𝐹𝑁 denotes the number of

false negatives. The F1 Score provides a harmonic mean of Precision
and Recall, balancing the trade-off between these two metrics. It
is expressed as: 𝐹1 = 2×𝑃×𝑅

𝑃+𝑅 Accuracy evaluates the overall cor-
rectness of the model by considering both positive and negative
classes. It is defined as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑁𝑇𝑃+𝑁𝑇𝑁

𝑁𝑇𝑃+𝑁𝑇𝑁 +𝑁𝐹𝑃+𝑁𝐹𝑁
where

𝑁𝑇𝑁 denotes the number of true negatives.

4.2 Performance Comparison
In this section, we evaluate the performance of our proposed model
against various baseline methods on the spoofing detection task.
Table 2 provides a comprehensive comparison using metrics such
as Area Under the ROC Curve (AUC), Accuracy, F1 Score, Precision,
and Recall. Each model was tested over multiple iterations, and the
average results are reported. The first six rows of Table 2 present tra-
ditional machine learning methods, including Logistic Regression
(LR), Random Forest (RF), and gradient boosting models (Adaboost
and GBDT). Among these, RF achieves the highest AUC (0.8985),
significantly outperforming other traditional methods. However,

Table 2: Experimental results for different machine learning
methods on spoofing detection task.

Method AUC Accuracy F1 Score Precision Recall
LR 0.7828 0.8119 0.5320 0.7077 0.4262
RF 0.8985 0.8578 0.7066 0.7322 0.6826
Adaboost 0.8716 0.8538 0.6564 0.7994 0.5568
GBDT 0.8911 0.8615 0.6720 0.8284 0.5653
HMLP 0.7587 0.7893 0.5894 0.7785 0.5852
LSTM 0.7759 0.8393 0.7483 0.8149 0.7058
BiTransformer 0.8957 0.8529 0.7504 0.8109 0.7205
EigenGCN 0.8904 0.8491 0.7405 0.8059 0.7102
RetaGNN 0.8935 0.8552 0.7705 0.8201 0.7409
GRU-DM 0.8805 0.8483 0.7601 0.8152 0.7308
RTG-Trans 0.8998 0.8602 0.7807 0.8255 0.7507
GPEGNN 0.8989 0.8578 0.7852 0.8309 0.7558
Ours 0.9029 0.8701 0.8002 0.8508 0.7702

these baseline models, while effective, demonstrate limitations in
capturing complex relational patterns, leading to suboptimal recall
values, particularly for LR (0.4262) and Adaboost (0.5568). The mid-
dle section of Table 2 introduces more advanced graph-based and
sequence-based models, such as BiTransformer, EigenGCN, and
RTG-Trans. These methods show marked improvements over tradi-
tional baselines, with BiTransformer achieving an AUC of 0.8957
and EigenGCN delivering competitive precision (0.8059). Notably,
RTG-Trans outperforms most other baselines in recall (0.7507), in-
dicating its effectiveness in detecting spoofing cases with minimal
false negatives. However, even these models exhibit limitations
in balancing all performance metrics, as seen in slightly lower F1
scores for some methods. Our proposed model, listed as “Ours” in
Table 2, achieves the best overall performance across all metrics. It
records the highest AUC (0.9029), Accuracy (0.8701), and F1 Score
(0.8002), along with superior Precision (0.8508) and Recall (0.7702).
These results demonstrate the effectiveness of our approach in
leveraging intricate graph-based relationships and temporal depen-
dencies for spoofing detection. Compared to the best-performing
baseline (RTG-Trans), our model achieves a 0.31% improvement in
AUC and a 2.4% increase in Accuracy, showcasing its robustness
and reliability in handling complex spoofing scenarios. This sig-
nificant performance boost highlights the capability of our model
to capture nuanced patterns and relationships in graph-structured
data, making it particularly well-suited for detecting spoofing and
other fraudulent activities in real-world applications.

4.3 Implementation and Online Deployment
In addition to the comparison on historical data, testing the accuracy
on future transactions is more important to real-world applications.
As to real-world deployment of spoofing detection, transactions
are processed through a distributed message queue for real-time
evaluation. Initially, they are checked against blacklist entries and
fraud detection rules (in-process detection). Transactions that hit
any blacklist or fraud rule are blocked immediately. If no matches
are found, user and symbol features are then extracted and passed
to an online predictive model (GDGM, in this case) as part of the
post-process detection. Throughout this process, historical transac-
tion data flagged by the detection systems is stored in an in-memory
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Figure 3: The experimental results of spoofing detection methods under queue-based study. During the experiment, pre-trained
models were employed to detect spoofing transactions over four weeks. At the end of each four-week interval, newly observed
cases were merged with the historically labeled database, and the models were retrained to improve their performance.

database to support large-scale detection. High-risk transactions
are escalated to domain experts for verification, with feedback on
these cases stored in the historical database. The predictive model
is periodically retrained in batches based on the latest expert feed-
back, allowing it to learn from recent spoofing patterns. Newly
identified fraud cases are also incorporated to refine the blacklist
and fraud detection rules, ensuring both detection layers remain
adaptive and robust. To evaluate the performance of our model
under real-world conditions, we tested 105 confirmed spoofing
cases using data collected between July and September through a
12-weeks queue-based study. We compared our proposed GDGM
model with two widely-used baselines, Logistic Regression (LR) and
Gradient Boosting Decision Tree (GBDT), as well as two state-of-
the-art (SOTA)methods specifically designed for spoofing detection,
RTG-Trans and GPEGNN. The comparison results of the online
experiments are summarized in Figure 3. As shown in Figure 3,
in the first 4 weeks, GDGM consistently outperforms all baseline
and state-of-the-art methods across all evaluation metrics. Notably,
GDGM achieves the highest AUC (0.8614), ACC (0.8152), F1 score
(0.6887), precision (0.7624), and recall (0.5623). These results high-
light the ability of our model to effectively identify spoofing cases
in real-world settings, even when dealing with noisy or irregular
data. Similar conclusions can be derived from the experimental
results of the next 8 weeks. The superior performance of GDGM
can be attributed to its ability to model irregular trading behaviors
and heterogeneous relationships among transactions, as well as its
integration of pseudo-labeling and graph aggregation techniques.
By leveraging these advanced capabilities, GDGM captures subtle
patterns indicative of conspiracy spoofing that are often missed by
traditional baselines and even existing SOTAmethods. Furthermore,
the deployment of GDGM in a real-time production environment
demonstrates its practicality and scalability. The integration with a
distributed message queue ensures low-latency processing, while
the adaptive learning framework enables the model to evolve based
on the latest spoofing trends. These features make GDGM a ro-
bust and reliable solution for combating financial fraud in dynamic,
high-stakes trading markets.

Figure 4: AUC of our method, in terms of threshold 𝑧, dimen-
sion of encoding output ℎ, dimension of the attention vector
𝑞, and number of heterogeneous aggregation layers.

4.4 Parameter Sensitivity
One of the important research questions is to analyze the sensi-
tivity of our model to its hyperparameters. In this experiment, we
examine key parameters such as the threshold for pseudo-labeling,
the dimension of encoding output, the dimension of the attention
vector, and the number of graph aggregation layers. Figure 4 il-
lustrates the impact of adjusting these parameters on the model’s
performance on the spoofing detection dataset.

Specifically, Figure 4(a) shows the effect of varying the threshold
for pseudo-labeling on model performance. As the threshold in-
creases from 0.2 to 0.8, the AUC metric steadily improves, peaking
when the threshold is set to 0.6. Beyond this point, performance
begins to decline, highlighting the importance of selecting an ap-
propriate threshold to balance noise suppression and label informa-
tiveness. Figure 4(b) evaluates the sensitivity to the dimension of
encoding output. The model’s performance increases significantly
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Table 3: Ablation study results, showing the impact of differ-
ent model components on spoofing detection task.

Model Variant AUC F1 Score Precision
GDGM 0.9029 0.8002 0.8508
w/o Pseudo Label 0.8998 0.7807 0.8255
w/o Neural ODE 0.8965 0.7513 0.8126
w/o Hete. GNN 0.8901 0.7413 0.8041

as the dimension grows from 16 to 64, with the AUC peaking for a
dimension of 64. However, further increases in the dimension lead
to slight performance degradation, likely due to overfitting or an
inability to efficiently utilize the additional capacity. The impact of
the dimension of the attention vector is shown in Figure 4(c). The
AUC steadily improves as the dimension increases from 32 to 128,
reaching a peak. Beyond this point, larger attention vectors result
in marginally lower performance, indicating that 128 is an optimal
choice for balancing expressiveness and computational efficiency.
Figure 4(d) examines the effect of the number of graph aggregation
layers. The performance improves as the number of layers increases
from 1 to 2, achieving the highest AUC at 2 layers. More layers
lead to a decline in performance, suggesting that excessive stacking
of graph aggregation layers may introduce noise or redundancy.
Based on these findings, we select the best parameter settings as
follows: a threshold of 0.6 for pseudo-labeling, an encoding out-
put dimension of 64, an attention vector dimension of 128, and 2
graph aggregation layers. These configurations enable our model
to achieve optimal performance on the spoofing detection task.

4.5 Ablation Study
To evaluate the contribution of each component in our model, we
conducted an ablation study by removing specific features from
the model: (1) Without Pseudo Label: This variant directly uses
the training set labels as input to the heterogeneous graph neural
network instead of pseudo labels, which reduces the model’s ability
to leverage inferred label consistency. (2) Without Neural ODE:
This configuration replaces our ODE-RNN encoder with a standard
RNN encoder, limiting the model’s capacity to capture continuous
temporal dynamics effectively. (3) Without Heterogeneous GNN:
In this variant of themodel, instead of employing the heterogeneous
graph neural network, we chose to use a homogeneous graph neural
network, specifically the Graph Attention Network (GAT), for the
classification task. When we switch to a homogeneous GNN like
GAT, the model’s expressiveness in accurately representing and
modeling these diverse node and edge types is reduced.

The experimental results obtained from the spoofing detection
dataset, which are clearly presented in Table 3, demonstrate the
significance of each of these components. The full model, which
incorporates all the components including the pseudo labels, neural
ODEs, and heterogeneous GNNs, achieves the best performance
across all the metrics that were considered for evaluation. This
outstanding performance of the full model serves to highlight the
importance of integrating these specific components together. No-
tably, when we replace the pseudo label mechanism, we observe
a moderate decline in the performance of the model. Moreover,
when either the neural ODE encoder or the heterogeneous GNN is

Figure 5: Performance comparison for models with different
generative data encoding modules. We fix the trained model
and make predictions for the next 12 weeks.

removed from the model, the effectiveness of the model is further
degraded to an even greater extent. These experimental outcomes
clearly underline the critical role that each component plays in en-
abling the model to achieve robust spoofing detection capabilities.

In addition to the ablation components that were mentioned
above, we also extended our investigation to explore the perfor-
mance of various encoding modules that are commonly used in
the context of spoofing detection. The experimental comparison of
these different encoding modules is visually depicted in Figure 5.
As can be clearly observed from the figure, the ODE-RNN encoding
module outperforms all the other models that were included in the
comparison. Following closely behind in terms of performance is
the RNN-RNN model, and then the Neural ODE. On the other hand,
the MLP-VAE and RNN-MLP models display relatively weaker per-
formance. This is primarily due to their inherent inability to fully
capture both the temporal and sequential dynamics of the data.
These dynamics are essential for accurately understanding and
processing the information within the spoofing detection dataset,
and the failure to effectively capture them results in the observed
suboptimal performance of these particular encoding modules.

5 CONCLUSION
Spoofing detection in financial trading, particularly intricate be-
haviors like conspiracy spoofing, is a critical yet challenging task.
Conventional machine learning methods often neglect the inter-
connected and heterogeneous nature of trading data, while existing
graph-based techniques struggle to capture the irregularities inher-
ent in real-world trading behaviors. Therefore, we proposed the
Generative Dynamic Graph Model (GDGM), a novel framework
designed to model both temporal trading behaviors and dynamic,
heterogeneous relationships among nodes. Our approach lever-
ages neural ordinary differential equations and gated recurrent
units to represent irregular trading patterns. Then, we employ the
pre-trained model for pseudo-labeling and heterogeneous attention-
based aggregation mechanisms to effectively capture conspiratorial
spoofing signals. The results of extensive experiments demonstrate
that GDGM outperforms state-of-the-art models in detecting spoof-
ing behaviors, highlighting its effectiveness and robustness. Fur-
thermore, the successful deployment of our system in one of the
largest global trading markets underscores its practical applicability,
validating its exceptional performance in real-world scenarios.
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