
The VLDB Journal
https://doi.org/10.1007/s00778-021-00701-5

SPEC IAL ISSUE PAPER

General graph generators: experiments, analyses, and improvements

Sheng Xiang1,2 · Dong Wen2 · Dawei Cheng3 · Ying Zhang2 · Lu Qin2 · Zhengping Qian4 · Xuemin Lin5

Received: 21 February 2021 / Revised: 9 July 2021 / Accepted: 7 September 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Graph simulation is one of the most fundamental problems in graph processing and analytics. It can help users to generate new
graphs on different scales to mimic observed real-life graphs in many applications such as social networks, biology networks,
and information technology. In this paper, we focus on one of the most important types of graph generators: general graph
generators, which aim to reproduce the properties of the observed graphs regardless of the domains. Though a variety of graph
generators have been proposed in the literature, there are still several important research gaps in this area. In this paper, we
first give an overview of the existing general graph generators, including recently emerged deep learning-based approaches.
We classify them into four categories: simple model-based generators, complex model-based generators, autoencoder-based
generators, and GAN-based generators. Then we conduct a comprehensive experimental evaluation of 20 representative graph
generators based on 17 evaluation metrics and 12 real-life graphs. We provide a general roadmap of recommendations for
how to select general graph generators under different settings. Furthermore, we propose a new method that can achieve a
good trade-off between simulation quality and efficiency. To help researchers and practitioners apply general graph generators
in their applications or make a comprehensive evaluation of their proposed general graph generators, we also implement an
end-to-end platform that is publicly available.

Keywords Graph generator · Graph neural networks · Graph simulation · Experimental evaluation

B Dawei Cheng
dcheng@tongji.edu.cn

Sheng Xiang
xiangsheng218@gmail.com

Dong Wen
dong.wen@uts.edu.au

Ying Zhang
ying.zhang@uts.edu.au

Lu Qin
lu.qin@uts.edu.au

Zhengping Qian
zhengping.qzp@alibaba-inc.com

Xuemin Lin
lxue@cse.unsw.edu.au

1 Zhejiang Gongshang University, Hangzhou, China

2 AAII, University of Technology Sydney, Sydney, Australia

3 Tongji University, Shanghai, China

4 Alibaba Group, Hangzhou, China

5 University of New South Wales, Sydney, Australia

1 Introduction

Due to the graph’s strong expressive power, a host of
researchers in fields such as e-commerce, cybersecurity,
social networks, military, public health, and many more, are
turning to graph modeling to support real-world data anal-
ysis [11,22,67–70,78]. For instance, the graph can be used
to model the interactions between compounds and proteins
in bioinformatics for drug discovery where each node repre-
sents the compound or a protein, and the interactions between
them are captured by the edges [28,29,43,59,75]. In a social
network, a node can represent a user and an edge can rep-
resent the relationship (e.g., friendship) between two users
[7,50,53].

In the graph processing and analytics, a key step is the col-
lection or generation of the graph data. In some applications,
it is important to use graph generators (i.e., graph-generative
models) to generate simulated graphs based on the real-life
graphdata for two reasons: (1) the inaccessibility of thewhole
real-life graphs; and (2) a better understanding of the distri-
bution of graph structures and other features. For instance, as
highlighted in [61], data acquisition is key step in responsible

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00701-5&domain=pdf
http://orcid.org/0000-0002-5877-7387

S. Xiang et al.

data management, and it is essential to collect or generate
representative data. In some scenarios, users are only able
to obtain a small sample of the real-life graph due to vari-
ous limits such as incomplete observability, privacy concern,
and company/government policy. It is necessary to use rep-
resentative graphs with similar size and distribution to the
real-life graphs for the training or performance evaluation
purpose. For instance, it is a common practice to start the
system development and data collection at the same time,
especially when the data collection is cost-consuming (e.g.,
in the counter-terrorist applications) or the two tasks areman-
aged by two separate teams. To better tune or validate the
efficiency and scalability of the algorithms during system
development, it is desirable to use representative large-scale
simulated graphs before the real large-scale graph is readily
available. Another example is the collaboration between the
graph computing teamatAlibabaGroup and the finance data-
analysis team at Ant Group for graph pattern-based fraud
detection. Specifically, the graph computing team aims to
develop efficient and scalable graph pattern-detection algo-
rithms to find abnormal graph patterns in the finance network
such that the finance data-analysis team can quickly identify
some potential threats. As the finance network data are sensi-
tive and cannot be directly released, the graph simulator has
been deployed to generate a large-scale finance network for
the graph computing team. Moreover, graph generators can
provide a large number of simulated graphs for the training of
the graph-based learningmodels [29,75]. By learning the dis-
tribution of the real-life graphs, the graph generators can also
help to better understand the real-life graphs. For instance,
graph generators can be used to generate source code [12]
and formulas [76], which help to understand insights of the
graph data. Graph generators can be used to obtain node rep-
resentations of large networks [34] and to extract multiple
relation semantics from knowledge graphs [71]. Molecular
graph generators extract the distribution of compounds and
design new and reasonable drugs [60,75]. Some researchers
use graph generators to create neural network structures for
the model architecture search [72,74].

1.1 Motivation

Due to the graph generators’ importance in directly related
applications, there is a long history of the study of graph
generators in many domains such as database, data mining
and, machine learning. Readers can refer to a recent survey
[11] for a comprehensive overview of this line of research.
In this paper, we focus on general graph generators which
aim to reproduce structural properties of observed graphs
regardless of the domains, something that is fundamental in
the study of graph-generative models. Despite the existence
of many outstanding achievements, we note that there still

exist several unsolved important problems. These form the
underlying motivation of this experimental paper.

1. Nocomprehensiveoverviewonemergingdeep learning-
based general graph generators With the advance of
deep learning techniques, advanced generative models
such as autoencoder and generative adversarial net-
work (GAN) have been widely used for data generation
in many fields (e.g., image and audio), significantly
enhancing the performance of traditional approaches.
Not surprisingly, these techniques have also been applied
recently to graph generators (e.g., [10,18,42,73,77]).
However, to our best knowledge, there is no comprehen-
sive overview of these emerging deep generative graph
models in the literature. For instance, in their recent
survey paper [11] on graph generators, the authors of
[11] only brieflymention severalmachine learning-based
general graph generators in the sections devoted to chal-
lenges and open problems.

2. No systematic and comprehensive performance com-
parison of general graph generators By their nature,
graphs are complex, making it difficult to capture explic-
itly the distribution of observed graphs. For instance,
a graph with n nodes can be represented by up to n!
equivalent adjacency matrices, each corresponding to
a different, arbitrary node ordering/numbering. More-
over, we need to learn distributions over possible graph
structures without assuming a fixed set of nodes (e.g.,
to generate candidate molecules of varying sizes). This
being the case, traditional graph similarity metrics (e.g.,
graph edit distance [56] andmaximumcommon subgraph
[44]) cannot be applied to determine whether two graphs
are from the same distribution. Therefore, unlike other
data distributions where the (dis)similarity of two sets
of objects (e.g., point sets in Euclidean space) can be
measured directly by a numeric value (e.g., KL diver-
gence [36] and Earth Mover Distance [14]), we have to
resort to the distributions of various graphs’ properties
(e.g., degree distribution); that is, if two graphs are from
the same distribution, the corresponding distribution of
particular properties (e.g., degree distribution) should
be very similar. This creates a large number of metrics
for evaluating the likelihood of two graphs from vari-
ous perspectives, such as Maximum Mean Discrepancy
[77] (MMD) between two node-degree distributions. In
addition to the value of graph simulation, there are also
many evaluation metrics for general graph generators
that are critical for decision-making by researchers and
practitioners under different application scenarios, such
as training time, inference time, scalability, permuta-
tion invariance, and tuning difficulty. To the best of our
knowledge, existing studies usually consider only a few

123

General graph generators: experiments, analyses, and improvements…

metrics in their performance evaluations, and many wor-
thy of attention are overlooked. Moreover, the number
of competitors and graphs deployed in experiments is
rather limited. We also note that there are discrepancies
in experimental results reported in certain papers. For
instance, it is reported in [42] that the simulation qual-
ity of the GRAN [42] outperformed the GraphRNN-S
[77] on the protein dataset, while our experiments have
different observations.

3. No algorithm that can achieve a good trade-off
between graph simulating quality and efficiency (scal-
ability)Traditional graphgenerators usually rely onwell-
defined graph models, and their corresponding graph
simulation algorithms are typically efficient and scale
well to large graphs. However, these techniques are hand-
engineered to model a particular family of graphs and
lack the capacity to learn the generative model directly
from observed real-life graphs. For instance, the B-A
model [3] is carefully designed to capture the scale-
free nature of empirical degree distributions, but fails to
capture many other aspects of real-world graphs such
as community structures. On the contrary, the emerging
deep generative models can achieve far superior graph
simulating quality, but suffer from low efficiency and
scalability when the deep learning techniques are applied
to general graph generators. For instance, the graph gen-
erators based on RNN (e.g., GraphRNN [77]) need to
store long node ordering to infer the adjacency matrix of
the whole graph, which consumes considerable time and
space. Although some research efforts aim to enhance the
efficiency of deep neural network-based approaches, the
results are not very promising in terms of the trade-off
between simulation quality and efficiency (scalability).
For instance, GRAN [42] accelerates graph simulation
by generating a block of nodes per step, but it still needs
to infer thewhole graph,whose adjacencymatrix requires
O(n2). Due to the limit of floating-point operations per
second (FLOPS) and GPU’s memory, it cannot generate
a graph with more than 105 nodes in our experimental
environment.

4. No handy toolkit for the users of general graph
generators To increase the impact of a specific type
of technique, support from handy software libraries
or toolkits is critical in enabling users to apply these
techniques easily to their applications. One well-known
example is the development of the LIBSVM library for
the support vector machine (SVM) technique [16] in
Machine Learning. Though source codes of many exist-
ing general graph generators are publicly available, from
our research, there appears to be no handy software
toolkit for users to apply existing general graph gen-
erators easily to their applications. Moreover, there is
no end-to-end platform such that users can easily inte-

grate their newly developed general graph generators for
a comprehensive performance evaluation with existing
approaches.

1.2 Contribution

In this paper, we aim to address the four problems above
and our principal contributions are summarized as follows.

– We give a comprehensive overview of existing gen-
eral graph generators, including recently emerged deep
learning-based approaches. We group existing methods
into four categories based on their foundation techniques.
For each category, we describe the key features of gen-
erators, representative approaches and summarize their
main characteristics.

– We conduct systematic and comprehensive experiments
to compare the performance of general graph generators.
Specifically, 20 representative general graph generators
in all categories are evaluated; 12 popular graph datasets
and 17 representative evaluation metrics are deployed
in experiments. We also provide easy-to-follow standard
recommendations about how to select the general graph
generator under different settings.Webelieve such a com-
prehensive experimental evaluation is beneficial to both
scientific communities and practitioners.

– The experience and insights we gained throughout the
study enable us to engineer a new algorithm, Scalable
Graph Autoencoder (SGAE), which can achieve a sat-
isfactory trade-off between the graph simulation quality
and efficiency (scalability).

– We implement an end-to-end platform for researchers
and practitioners such that not only can they apply a vari-
ety of existing general graph generators directly to their
applications but can also easily integrate their own-built
general graph generators for comprehensive performance
comparison and analytics. We believe this will greatly
benefit future research and the application of graph gen-
erators.

Roadmap. The rest of the paper is organized as follows.
In Sect. 2, we formally define the problem and provide an
overview of general graph generators evaluated in this paper.
We then present the details of graph generators and intro-
duce their optimizing targets in Sect. 3. In Sect. 4, we present
some improvements for general graph generators. Compre-
hensive experimental results for general graph generators and
an introduction to the toolkit we developed are presented in
Sect. 5. Section 6 concludes the paper.

123

S. Xiang et al.

2 Background

2.1 Problem definition and notations

We define a graph G = (V , E). V denotes a set of n nodes
(vertices), and a set of m edges E ⊆ V × V , where a tuple
e = (u, v) ∈ E represents an edge between two vertices
u and v in V . The graph G can also be represented by an
adjacencymatrixA ∈ {1, 0}n×n .As reflected in the literature,
we assumeG is an undirected graph, and hence the adjacency
matrix of the graph is symmetric. Additionally, we denote
the (optional) node-feature matrix associated with the graph
as X ∈ R

n×d where n denotes the number of nodes and d
denotes the dimension of the node feature. We denote the
initiator matrix of the graph G by MI .

Problem Statement. Given a set of observed graphs {G},
a general graph generator aims to learn a generative model
to capture the structural distribution of the graphs, such that
a set of new graphs {G ′} with similar structural distribution
can be generated.

Ideally, a general graph generator should be able to gen-
erate new graph which has exactly the same distribution as
the observed graphs. Nevertheless, as discussed in Sect. 1, it
is notoriously difficult to tell if two graphs are from the same
distribution due to the complex nature of graph structure.
In practice, we have to resort to representative evaluating
metrics in the literature in our experiments, each of which
aims to quantitatively capture the likelihood of two graphs
(graph distributions) from one perspective (e.g., degree dis-
tribution). Please refer to Sect. 5 for more details. Hopefully,
a good graph generator should be able to generate new graphs
with the same distributions regarding all the above metrics.
Moreover, the generating algorithm should be efficient and
scalable such that the users can efficiently handle large-scale
graph in real-life applications.

2.2 Scope

As shown in the recent survey [11], existing graph generators
can be classified into two categories: general graph genera-
tors (e.g., [2,10,34,77]) anddomain-specificgraphgenerators
(e.g., [6,7,30,60,80]). Notably, general graph generators aim
tomimic the structures of the observed graphs so that the gen-
erated graph can reproduce such properties of the preserved
graphs as degree distribution and the path length distribution
regardless of the domains. Domain-specific graph genera-
tors consider particular domains such as semantic web (e.g.,
[30]), graph database (e.g., [6]), temporal graphs (e.g., [80]),
and social networks (e.g., [7]).

To make a comprehensive yet focused comparison of
graph generators, here we mainly consider general graph
generators. In Sect. 2.3, we classify existing general graph

generators into four categories based on their foundation
technique. For each category, the key features andmain char-
acteristics, as well as a set of representative approaches, are
introduced in detail in Sect. 3. To make a comprehensive
performance evaluation, we include a large sample of repre-
sentative graph datasets and evaluationmetrics as observed in
the literature covering experiments with general graph gen-
erators.

2.3 Classification of general graph generators

In this subsection, we classify general graph generators
according to the key foundation techniques to allow read-
ers to form a natural first acquaintance of these approaches.
As demonstrated in Table 1, we distinguish (1) simple
graph model-based general graph generator (simple model-
based generator for short); (2) complex graph model-based
general graph generator (complex model-based generator
for short) (3) autoencoder-based general graph generator
(autoencoder-based generator for short); and (4) generative
adversarial network-based general graph generator (GAN-
based generator for short). Below is a brief overview of each
category of general graph generator. Table 1 also shows the
inputs and optimization objectives of each generator.

1. Simple model-based generator These generators rely
onwell-known simple graphmodels such as theBinomial
graph model [20], randomized small-world graph model
[66], and preferential graph models [3], each of which
can be expressed explicitly by formulas, given just a few
parameters.We can generate a new graph directly by tun-
ing the parameters of the simple graph model to preserve
certain properties of observed graphs, such as the power-
law degree distribution for the preferential graph model
(e.g., [3]). In Table 1, we show 8 representative simple
model-based generators. These require fewer parame-
ters than other categories, resulting in relatively poor
expressive power for observed graphs. To enhance the
expressive power of the generator, we can consider the
hierarchical combination of the simple models where a
set of small “local” simple graphs are combined hierar-
chically to generate the “global” graph. For instance, the
Kronecker graph model [37] gives a concrete example
that a small graph’s adjacency matrix Alocal ∈ {0, 1}2×2

can be extended recursively to Aglobal ∈ {0, 1}2k×2k .
2. Complex Model-based Generator By using sophis-

ticated models with many more parameters, we can
better capture the properties of the observed graphs. The
complex model-based generators rely on probabilistic
graph models or decision-process-based graph models
such as mixed membership stochastic blockmodels [1],
stochastic Kronecker graph model [37] and decision-

123

General graph generators: experiments, analyses, and improvements…

Table 1 Categories, names, reference, and optimization objectives of general graph generators

Category Graph generator Optimization objective

Simple Model-Based Generator E-R [20] None.

W-S [66] None

B-A [3] None

RTG [2] None

BTER [35] None

SBM [27] None

DCSBM [31] None

R-MAT [15] None

Complex Model-Based Generator Kronecker [37] Maximize the likelihood of permutation

MMSB [1] Maximize a posteriori probability of blocks from observed graphs

GraphRNN [77] Maximize the likelihood of permutations and edge dependence

GRAN [42] Maximize the likelihood of a family of permutations

BiGG [18] Maximize the likelihood of orderings of the binary tree

Autoencoder-Based Generator VGAE [34] Learn the generative distribution

Graphite [23] Learn the generative distribution

SBMGNN [46] Learn the sparse generative distribution

GAN-Based Generator ARVGA [49] Learn the generative distribution adversarially

NetGAN [10] Optimize the Wasserstein generative adversarial loss

CondGEN [73] Optimize the reconstruction loss adversarially

process-based graph models [18,42,77], each of which is
modeled by a considerable number of parameters. These
generators simulate a new graph by optimizing the like-
lihood function to fit the generative distribution of the
observed graphs. In Table 1, we show 5 representative
complex model-based generators.

3. Autoencoder-based Generator The autoencoder is a
type of generative model used to learn a representation
(encoding) and reconstruct input distribution (decod-
ing) for a set of data in an unsupervised manner, which
has been widely used for image and text data genera-
tion. In the field of autoencoder-based graph generators,
i.e., graph autoencoders are usually parameterized by
graph neural networks (GNN). For examples, VGAE
[34], Graphite [23], and SBMGNN [46] are parameter-
ized by graph convolutional neural networks. In Table 1,
we show 3 representative autoencoder-based generators.

4. GAN-based generator The graph-generative adversar-
ial models are based on generative adversarial network
(GAN) architecture, which is used to learn a robust gen-
erative distribution for the observed data in the manner
of a game between the generator and the discriminator.
In the field of GAN-based graph generators, the discrim-
inators remain flexible to allow control of the generative
distribution of the generators’ output, e.g., node latent
variables [49], graph representations [73], and random
walks [10]. The generator component can have a more
robust output than autoencoder-based graph generators.

In Table 1, we show 3 representative GAN-based gener-
ators.

2.4 A complimentary classification

For a better understanding the techniques of the representa-
tive graph generators, in this subsection, we provide a more
complex and deep taxonomy as illustrated in Fig. 1, which
consists of 5 categories and 17 sub-categories.

2.4.1 Sequential generating

means evolutionarily modeling a graph G; that is, relying
on an existing incomplete graph to generate new elements.
A graph G is represented by a sequence of elements, i.e.,
SN = {s1, ...sN }. Then the new element is generated with
sN+1 = f (SN), where f denotes the generative model (e.g.,
RNN, MLP). Following are three sub-categories:

1. Node sequence. GraphRNN [77] and [41,59,62] gener-
ate a graph through generate nodes and associated edges
one-by-one. We select GraphRNN as representative of
this category because it can generate graphs with more
than 1000 nodes (compared with [41,59]) and has better
performance and influence in generating general graphs
(compared with [62]).

2. Edge sequence. BiGG [18] and [4,5] model a graph as a
sequence of edges. We select BiGG as representative of

123

S. Xiang et al.

General Graph Generator

Deep Graph Generator Traditional Graph Generator

Sequential generating One-shot generating Rule-based generating Block-based generating

• Node sequence
• Edge sequence

• Graph-motif sequence

Adversarial generating

• Random-walk based
• Latent-variable based

• Graph based

• Message-passing based
• Iterative decoder

• Sparse latent variable

• Random graph model
• Preferential attachment
• Small-world graph
• Random typing

• Kronecker-product based

• Stochastic block model
• Mixed membership
• Degree & clustering-

coefficient corrected

Fig. 1 Another classification of graph generators

this category because it achieves better performance and
scalability in generating general graphs (compared with
[4,5]).

2. Motif sequence.GRAN [42] and [29,51] generate graph
motifs (e.g., a block of nodes and associated edges)
sequentially to generate a complete graph. We select
GRAN as representative of this category because it is
more scalable than [29,51].

2.4.2 One-shot generating

meansmodeling an entire graph directly, that is, the elements
on the graph are generated with no sequential dependencies.
Corresponding generators can be further classified into 3 sub-
categories:

1. Message passing-based encoder. VGAE [34] and [57]
are proposed to generate one graph in one shot through
message passing-based encoder. We choose VGAE as
representative because it first proposed graph convolu-
tional technology to generate graphs.

2. Iterativedecoder.Graphite [23] generates graphs through
reserve message-passing decoder. Graphite is selected as
representative because of its influence and contribution
on new technology, i.e., iterative decoder.

3. Sparse latent variables.SBMGNN[46] generates graphs
through modeling sparse latent variables. SBMGNN is
selected as representative because of its contribution on
preserving community structure through sparse latent
variables.

2.4.3 Adversarial generating

means training graph generator through a game between
generator and discriminator. Corresponding models can be
divided into the following 3 sub-categories:

1. Random-Walk based. NetGAN [10] and [81] generate
random walks through adversarial training. We choose
NetGAN as representative because it has better perfor-
mance on generating general graphs.

2. Latent-variablebased.ARVGA[49] is selected because
of its contribution on adversarial training for latent vari-
ables.

3. Graph based. CondGEN [73] is selected because of its
contribution on adversarial training for generated graphs.

2.4.4 Rule-based generating

means modeling a graph through explicit operations and
a small number of parameters. This category’s graph gen-
erators model graphs through selecting samples from pre-
defined graph families [3,37,53]. They can be further classi-
fied into the following 5 sub-categories:

1. Random graph model. E-R [20] generate each edge
by sampling from a Bernoulli distribution parameterized
with a fixed value. We choose E-R, B-A, and W-S as
representatives because of their influence.

2. Preferential attachment graph model. B-A [3] ran-
domly add edges for new node to generate scale-free
graphs.

3. Small world graph model. W-S [66] randomly rewrite
edges from cycle graph to generate a small-world graph.

4. Random typing graph model. RTG [2] generates edge-
list through random-typing process. We select RTG
because of its influence and technical contribution.

5. Kronecker-product based. R-MAT [15], Kronecker
[37] and [47] model a graph through a regressive drop-
ping edges mechanism similar to Kronecker-product.We
select R-MAT and Kronecker as representatives because
of their influence.

123

General graph generators: experiments, analyses, and improvements…

2.4.5 Block-based generating

means modeling a graph through modeling “blocks,” i.e., a
subset of nodes. Corresponding models can be classified into
the following 3 sub-categories:

1. Vanilla stochastic blockmodel SBM [27] was first pro-
posed to model social networks.

2. Mixed membership. MMSB [1] models a graph with
mixed membership of blockmodel. MMSB provides a
generalization of SBM to have better quality of simulat-
ing graphs.

3. Degree & clustering-coefficient corrected. DCSBM
[31] was proposed to correct the blockmodel with
observed degree distributions. BTER [35] was proposed
to correct the average clustering coefficient in each block,
and correct the degree distribution through a two-level
edge sampling process.

3 General graph generators

In this section, we describe the key features of general graph
generators in each category and summarize their main char-
acteristics. For each category, we present the details of its
representative generators.

3.1 Simple model-based generator

Simple model-based generators rely on some well-known
simple graph models (families), such as Binomial graphs
[20], randomized small-world graphs [66] and preferential
attachment graph model [3]. Usually, each family of graph
models can capture one or a few properties of the real-life
graphs well. For instance, the B-A model can generate free-
scale networks, and the W-S model can capture the key
characteristics of the small-world graphs. Below are details
of 8 representative techniques in this category.

E-R. Binomial graph model (E-R) was first proposed and
studied by Erdős et al [20]. Each edge of the binomial graph
is generated independently with the probability P(Ai, j =
1) = p, where the constant p is controlled by the user.
Given an undirected and no self-loop graph with n vertices
and m edges, the parameter p is immediately available with
p = 2m

n(n−1) . The naive implementation of E-R-based graph
generator generates an edge with probability p for each pair
of vertices, with time complexity O(n2) and space complex-
ity O(m + n). As shown in [8], an efficient algorithm with
time complexity O(m + n) is used in practice.

W-S. Small-world (W-S) graph model was first proposed
by Watts and Strogatz [66]. It can simulate the random con-
nection of real graphs by re-sampling edges and make the

distribution of the generated graph between the E-R graph
and completely regular graph by adjusting the sampling
probability and the number of connected edges. The imple-
mentation ofW-S-based graph generator randomly resets the
target nodes of each source node from a regular circle graph,
having a time complexity O(k × n) and space complexity
O(m + n), where k is the number of edges for each source
node.

B-A. The preferential-attachment [3] (B-A) graph model
needs to generate graph nodes sequentially and add a fixed
number of edges to new nodes to generate a scale-free graph
with the power-law distribution. The implementation of a B-
A-based graph generator has the time complexity of O(k×n)

and the space complexity of O(m+n), where k is the number
of edges a new node will attach.

RTG. The Random-Typing Generator [2] (RTG) creates a
two-dimension (2d) keyboard to type words that are repre-
sented as edges of a graph. The graph generation process
is modeled as the process of typing words. There are four
parameters (K ,W , q, β) to control the generative distribu-
tion. K is the number of possible characters in one word,
and W is the number of words. q is the probability of
typing space. β controls the probability of randomly typ-
ing diagonal characters and non-diagonal characters on the
2d keyboard. These parameters help generate graphs with
power-law degree distribution and communities. Moreover,
RTG can also generate bipartite graphs. The implementation
of the RTG-based graph generator requires O(m log n) time
complexity and O(m + n + K 2) space complexity.

BTER. The Block Two-level Erdős-Rényi model [35]
(BTER) was proposed to simulate both the realistic graph’s
degree distribution and its clustering coefficient by degree.
These two elements are extracted directedly from observed
graphs. BTER creates affinity blocks first, to assign degrees
to nodes. Then BTER assigns edges in and between affinity
blocks to match the degree distribution. The clustering coef-
ficient per degree is assigned when creating links between
nodes in the same affinity blocks. The implementation of
the BTER-based graph generator has a time complexity
O(m + n) and space complexity O(m + n).

SBM&DCSBM. The Stochastic BlockModel [27] (SBM)
generates a random graph based on the probability matrix of
the block B and the number of nodes of each block. The
SBM-generated graph is considered as a connected set of E-
R graphs with community structure. The Degree-corrected
Stochastic Block Model [31] (DCSBM) sets the degree of
each node following the Stochastic Block Model, the pro-
cess thereby tuning the degree distribution of the generated
graph. To obtain the block probability matrix B, we choose
the best block partition by maximizing the modularity [9]
of the observed graphs, with linear time complexity of m.

123

S. Xiang et al.

After the number of blocks and the probability of generating
edges between blocks are determined, the time complexity
for generating one graph of SBM and DCSBM is O(n2) in
their naive implementations. As shown in [31], an efficient
implementation of the (DC) SBM-based graph generator has
a O(m+n) time complexity and O(m+n) space complexity.

R-MAT. The recursive graph model [15] (R-MAT) divides
the adjacency matrix recursively and determines a graph by
dropping edges into one quadrant of four recursively. As for
the parameter optimization of the R-MAT model, we use the
empirical parameters mentioned by the author as the initial
matrix MI . R-MAT generates one graph with n nodes and
m edges by randomly sampling edges with time complexity
O(m log(n)) and space complexity O(m + n). R-MAT also
inspired Dai et al. [18] to compress one row of adjacency
matrix into a binary tree.

3.2 Complexmodel-based generator

With more parameters and complex model architecture,
we know statistics learning and parameterized models can
simulate and generate the adjacency matrix of one graph
numerically [1,37]. Although there are n! permutations of
adjacency matrices to represent the same graph, nevertheless
they successfully achieve better simulation quality than sim-
ple model-based generators. In addition to being represented
as an adjacency matrix, the graph structure can also be mod-
eled as a decision-making process. In this process, nodes and
edges are generated sequentially, which is easy to represent
and learn for regular graphs. Below we introduce 5 represen-
tative complex model-based general graph generators.

MMSB. The Mixed Membership Stochastic Blockmodel
[1] uses a probabilistic model to build a graph. First, the
mixed membership vector πi of the node i is sampled from
the Dirichlet distribution with πi ∼ Dirichlet(α), where
α denotes the parameters. Then the indicator of the edge
is obtained by sampling from a multinomial distribution
with zi, j ∼ Multinomial(πi). Finally, the edge is sampled
from the Bernoulli distribution, the probability of which
is obtained by a bilinear function of edge indicators with
Ai, j ∼ Bernoulli(zTi, jBzi, j), where B ∈ R

K×K represents
the probability of generating one edge between two blocks.

The MMSB maximizes a-posteriori to approximate its
parameters, but its hyperparameter K , the number of blocks,
is difficult to select when simulating large graphs. We use
a Louvain community detection algorithm [9] to select
the number of blocks K . Because the MMSB aims to
approximate the observed adjacency matrices, it has a time
complexity of O(n2) and space complexity of O(n2) to
update its parameters. Note that the inference algorithm of
MMSB can easily be paralleled.

Kronecker. The Kronecker graph model uses the Kro-
necker product to build a graph, where the initiator graph is
self-connected and has a binary matrix to represent the edges
of the graph. The initiator matrix of the stochastic Kronecker
graph is not binary, which denotes the probability of generat-
ing one edge. Different from R-MAT, the sum of the initiator
is not 1 and the probability of each edge can be calculated
independently as follows:

P(Ai, j = 1) =
| log n|−1∏

k=0

MI [� i − 1

2k
� (mod 2) + 1,

� j − 1

2k
� (mod 2) + 1].

(1)

In the optimization stage, the Kronecker graph model looks
for the best node permutations and uses the maximum like-
lihood principle to estimate the parameters of the initiator
matrix. To generate graphs faster, the Kronecker model
imitates R-MAT to throw edges recursively into the adja-
cency matrix, which accelerates the generation process of
the stochastic Kronecker graph, with the time complexity
O(mlog(n)) and space complexity O(m + n).

GraphRNN. Two recurrent neural networks (RNN) are
deployed by GraphRNN. The first, called graph-level RNN,
is used to store generated nodes and to generate new nodes.
The second, called edge-level RNN, is used to store gen-
erated edges on the newly generated node and infer new
edges. Each edge is sampled from the Bernoulli distribu-
tion, which is parameterized by the output of the edge-level
RNN. At this point, the graph generation is modeled as a
decision sequence. Assuming that h0 and hi,0 represent the
initial graph state and node i’s hidden state, respectively,
GraphRNN’s generation process can be formulated as fol-
lows:

hi = RNN1(hi−1,Ai−1),

θi, j = RNN2(hi, j−1,Ai, j−1), (hi,0 = hi)

Ai, j ∼ Bernoulli(θi, j), (j < i)

(2)

where Ai−1 and Ai denote the adjacency vectors of the
last node and next generated node, respectively. In the
GraphRNN, Gated Recurrent Unit [17] (GRU) is used to
encode the graph state and infer node-adjacency vectors.

For graph generation with no edge dependence, authors
propose a variant named GraphRNN-S which replaces the
second RNN with a multi-layer perceptron (MLP). Then the
adjacency vector Ai will be sampled from a multivariate
Bernoulli distribution parameterized by θi . The generation
process of GraphRNN-S can be formulated as follows:

123

General graph generators: experiments, analyses, and improvements…

hi = RNN(hi−1,Ai−1),

θi, j = MLP(hi),

Ai ∼ Bernoulli(θi)

(3)

The variant performs well in generating protein graphs
and other real-world graphs, which show less edge depen-
dence than grid and community graphs. GraphRNN-S also
promoted subsequent works [18,42] to scale the complex
model-based graph generator up to larger graphs.

After modeling the graph as a sequence of decisions, the
most important problem is how to prevent the order of nodes
from affecting the generalization performance of the model.
GraphRNN utilizes Breadth-first Search (BFS) ordering to
reduce the number of permutations of the observed graphs
and then maximizes the likelihood of the edge dependence
and node permutations. It generates the nodes and edges of
the graph step-by-step and requires O(n2) time complexity
in each epoch. Thus, the complexity for training and infer-
ence is O(e × n2) and O(n2), respectively, where e is the
number of epochs used in training. Due to the necessary
dependence on nodes and edges, the generation process of
completeGraphRNNcannot be carried out in parallel. There-
fore, the follow-up work is devoted mainly to improving the
scalability of GraphRNN.

GRAN. GraphRecurrentAttentionNetworks [42] (GRAN)
aims to improve the performance of GraphRNN by address-
ing the following issues: (1) low generalization due to strong
dependence on node orderings and edges; (2) expressive
capability of only one canonical node ordering; and (3)
poor parallelization compared with a graph autoencoder. To
reduce its dependence while retaining the expressiveness of
the graph auto-regressive model (e.g., GraphRNN), GRAN
leverages graph attention networks [65] (GAT) to infer the
parameters of Bernoulli distributions when generating the
whole graph. GRAN uses t steps to generate a graph, and
each step generates B nodes, called a block. If B > 1, the
generation process can accelerate by commencing the next
block in the S-th row of the last generated block, called stride
(1 ≤ S ≤ B). At t-th generation step, GRAN reduces the
embedding size of previous nodes to generate large graphs
by a linear mapping:

Li = [Lbi ,1...Lbi ,B],
hi = WLi + b, ∀i < t

(4)

where [·] denotes a concatenation operation of vectors and
Li ∈ R

Bn is a vector concatenated by the output vectors
of a block of nodes. The initial node representations are
updated regressively with hi = GRU(hi ,GAT(hi)), as with
[40]. After updating node representations, to express the edge
dependences in one block, GRAN models the probabilities

of generating edges through a mixture of Bernoulli distribu-
tions:

p(Lbt |Lb1, ..., Lbt−1) =
K∑

k=1

αk

∏

i∈bt

∏

j≤i

θk,i, j ,

α1, ..., αK = Softmax(
∑

i∈bt , j≤i

MLPα(hi − h j)),

θ1,i, j , ..., θK ,i, j = Sigmoid(MLPθ (hi − h j))

(5)

where K is the number ofmixture components.When K > 1,
the edges generated in parallel are no longer independent
because of the latent mixture components, which maintains
the edge dependence without loss of parallelization.

To learn the graph-generative model under more than one
canonical node orderings, GRAN proposes a new objective
to maximize a lower bound of log-likelihood as follows:

log p(G) = log
∑

π

p(G, π) ≥ log
∑

π∈�

p(G, π) (6)

where � denotes the selected canonical orderings of the
graph node. The greater the quantity of canonical orderings
picked, the tighter the bound will be.

Inspired by the parallelism of graph neural networks
(GNN), GRAN provides a flexible trade-off between compu-
tational cost and generative performance through adjusting
the block size and stride length S, so that it requires a
time complexity of O(n

2

S) in each epoch. Its efficiency and
scalability are significantly better thanGraphRNNwhen gen-
erating large graphs, e.g., graphs with more than 500 nodes
under our experiment setting.

BiGG. Inspired by the recursive graph model [15] (R-
MAT), BiGG is a graph auto-regressive model with a tree
structure. Assuming thatG is a large sparse graph (m � n2),
generating only the edges ofG is a more efficient choice than
generating each node’s adjacency vector and can be formu-
lated as follows:

p(A) = p(e1)p(e2|e1)...p(em |e1, ..., em−1) (7)

where each edge ei = (u, v) includes the indices of two
nodes. Therefore, the generation process contains m steps.
In previous work, a single edge can be factorized with
p(ei) = p(u)p(v|u) and p(v|u) is assumed to be simple
multinomials over n nodes, which will result in the com-
plexity of O(n). BiGG reduces the number of decisions of
specifying v through formulating p(v|u) as follows:

p(v|u) =
�log2 n
∏

i=1

p(xi = xv
i) (8)

123

S. Xiang et al.

where xv
i ∈ {left, right} denotes the i-th decision in the

sequence of node v and p(xi = xv
i) denotes the probability

of the i-th decision leading to v. Note that xv
i = left (right)

means the left (right) sub-tree is chosen in the i-th decision
of node v. BiGG uses Eu = {(u, v) ∈ E} to represent the
set of edges connecting node u and Nu = {v|(u, v) ∈ Eu}
to represent the set of neighbor nodes of u. For each of node
u’s row of adjacency matrix, generating all node u’s edges
Eu is equivalent to generating a node u’s binary tree Tu ,
where for each v ∈ Nu the generation process starts from
the root node and ends in a leaf node. Each node t is gen-
erated with its left subtree lch(t) and previously generated
nodes as conditioning. The right subtree rch(t) is generated
after generating the left subtree and its dependencies, similar
to the in-order traversal of the binary tree. Let contextu(t)
and contextu(lch(t)) represent the previous context and the
summary context of the left subtree of node t , respectively.
Then the recursively generated p(Eu) can be formulated as
follows:

p(Eu) =p(Tu)

=
∏

t∈Tu
p(lch(t))p(rch(t))

=
∏

t∈Tu
p(lch(t)|contextu(t))

p(rch(t)|contextu(t), contextu(lch(t))).

(9)

where p(lch(t)|·) and p(rch(t)|·) are Bernoulli distributions
parameterized by TreeLSTM networks [63]. So far, each row
of adjacency matrix A can be generated recursively through
the construction of binary tree and p(E) = ∏n

u=1 p(Eu)

costs O(m log n) time. The full model is going to generate
the adjacencymatrix rowby row. Similarly, BiGGmodels the
root nodes of n edge-binary trees as the summary context of
nodes. It also models the summary context into a row-binary
tree recursively, which costs O(n log n) time. BiGG gener-
ates a graph requiring O((m + n) log n) time complexity,
which is especially efficient when generating large sparse
graphs. Each depth of parameters in the binary tree can be
updated in parallel, resulting in O(log n) steps,which ismore
efficient than O(n) steps in GRAN and GraphRNN-S.

3.3 Autoencoder-based generator

The complex model-based graph generators encountered a
bottleneck of generative performance until the advent of the
graph autoencoders (GAEs). Thanks to the progress of vari-
ational autoencoder and deep learning [32,52], researchers
extend autoencoder to the field of graph representation learn-
ing and graph generation.Meanwhile, graph neural networks
[33,65,69,78] are also proven to be successful on graph rep-
resentative and generative models.

Encoder DecoderProbabilistic
Parameters

Latent
Variables

Random
Noise

Adjacency
Matrix

Adjacency
Matrix

Reparameterization

Fig. 2 A summary of autoencoder-based generators

Figure 2 illustrates the framework of the autoencoder-
based generators. Specifically, an encoder is used to learn the
representation (i.e., encoding) of the observed graphs, and the
probabilistic parameters are captured by a deep graph neural
network (GNN). By adding some random noise, we can repa-
rameterize the latent variables and reconstruct (i.e., decode)
a new graph with the decoder. The parameters of GNNs will
be updated according to the accuracy of the simulation. The
above process is repeated till a new graph with high quality
(e.g., small reconstruction error) can be generated. Below,
we introduce three representative autoencoder-based graph
generators.

VGAE. The variational graph autoencoder [34] was pro-
posed by Kipf et al. to naturally extract node features and
infer the generative distribution of observed graphs. VGAE
uses a GNN [33] as the encoder of graph data. The GNN
layer parameterized by W is defined as follows:

GNNW(X,A) = D̄− 1
2 ĀD̄− 1

2XW (10)

where Ā = A + In denotes the adjacency matrix with an
added self-loop and D̄ is degree matrix of Ā with D̄i,i =∑

j Āi, j . The VGAE uses two layers of GNN to infer the

parameters of the stochastic variables Z ∈ R
n× f , where

f denotes the dimension of latent variables. For the GAE
model, the inference model of q(Z|X,A) is parameterized
as follows:

Z = GNNW2(σ (GNNW1(X,A))) (11)

where σ denotes the nonlinear activation function. Then the
generative model is defined as a bilinear function of nodes’
latent variables with P(Ai, j = 1) = σ(ZiZT

j), where
Zi denotes the latent variables of node i . VGAE has two
optimization objectives, one is to reconstruct the adjacency
matrix and the other is to approximate the a priori distribu-
tion. That leads to optimizing the variational lower bound as
follows:

L = Eq(Z|X,A)[log p(A|Z)] − K L[q(Z|X,A)||p(Z)] (12)

where p(A|Z) is the generative distribution with p(A|Z) =∏
i
∏

j p(Ai, j |Zi ,Z j), K L(·||·)denotes theKullback-Leibler
divergencemeasuring the distancebetween twodistributions,

123

General graph generators: experiments, analyses, and improvements…

and p(Z) is a Gaussian prior with p(Z) = ∏n
i=1N (Zi |0, I).

VGAE needs O(n2) time to generate a new graph with space
O(m + n), and it takes O(n2) time in each epoch of the
training process.

Graphite. Working similarly to VGAE, the iterative gen-
erative model of graphs [23] (Graphite) parameterizes the
variational autoencoders with graph neural networks. The
main contribution of Graphite is that it replaces the inner-
product decoder of VGAE with node representations and
intermediate graphs. The decoding process is formulated as
follows:

Z∗ = GNNθ (Â, [Z|X]), with Â = ZZT

||Z||2 + {1}n×n (13)

where θ denotes the parameters of GNN and [·|·] means a
concatenation operation. Â is an intermediate graph, towhich
is added a constant of 1 to keep the matrix non-negative. The
feature matrix Z∗ can be refined gradually until getting the
final features to generate an adjacency matrix.

Graphite is consistent with VGAE in encoder and opti-
mization objectives. It still has a time complexity O(n2) in
each epoch and space complexity O(m + n) due to the inner
product involved although the implementation of the itera-
tive decoder is accelerated to O(n × f 2), where f is the
dimension of the latent features.

SBMGNN. Nikhil et al. [46] proposed a sparse variational
autoencoder for graphs by merging the interpretability of
SBM and the fast inference of graph neural networks. As in
MMSB, SBMGNN uses a stick-breaking construction of the
Indian Buffet Process [64] to infer the size of community
memberships, which is formulated as follows:

vk ∼ Beta(α, 1), k = 1, ..., K

bnk ∼ Bernoulli(πk), πk =
k∏

j=1

v j
(14)

where K is the number of communities andπk is the probabil-
ity of all memberships. Unlike MMSB, SBMGNN infers the
variational parameters of these distributions through graph
neural networks. SBMGNN also uses the variational graph
autoencoder (VGAE) to approximate the dense latent vari-
ables rn . In contrast to VGAE, SBMGNN models the node
embeddings as zn = bn � rn with remaining other sections
consistent. So far, the inference process can be defined as
follows:

qφ(vnk) = Beta(vnk |GNNα(X,A),GNNβ(X,A)

qφ(bnk) = Bernoulli(bnk |GNNπ (X,A))

qφ(rn) = N (GNNμn (X,A), diag(GNNσ 2
n
(X,A)))

(15)

Generator

Discriminator

Prior
Distribution

Real Data
Distribution

Fake Data
Distribution

Observed
Graphs

Generated
Graphs

Fig. 3 Asummaryof generative adversarial network (GAN)-basedgen-
erators

The graph generation process of SBMGNN is the same as
other autoencoder-based graph generators. The overall opti-
mization objective of this inference and generativemodel can
be formulated as the sum of KL divergence of these approx-
imating distributions and the reconstruction loss, which can
be extended from the objective of VGAE. SBMGNN has
a time complexity of O(n2), and has realized the model’s
interpretability with the cost of more model parameters.

3.4 GAN-based Generator

The core of generative adversarial networks [21] (GANs) is
to use a discriminator to generate fake data with good qual-
ity and robustness. As shown in Fig. 3, the key idea of the
GAN-based graph generators is to use the graph generator to
establish the mapping from the random variable to the fake
hidden variable of the graph, and put it into the discrimina-
tor with the encoded hidden variable of the real graph. The
objective of these models is to make the generator generate
with stability and produce realistic hidden variables, which
can be decoded to simulate the realistic graphs. Below are
three representative GAN-based generators.

ARVGA. The adversarial regularized variational graph
autoencoder [49] (ARVGA)wasproposed togenerate embed-
dings of the graph. Given a graph G, the hidden variable
matrix Z is obtained by using the same method of graph
encoding used in VGAE. Then the discriminator will repeat-
edly update its parameters by optimizing following cross-
entropy cost:

Ep(z)∼q(·|Z) log(1 − D(z)) + Ep(a)∼N (·|0,I) log D(a) (16)

where z, a are the sample vectors from Z and real data
distribution N (0, I), respectively, and D is built on a stan-
dard multi-layer perceptron (MLP). Before each update of
parameters of the graph autoencoder, the parameters of the
discriminator are updated for multiple times.

The main difference between ARVGA and VGAE is that
the former regularizes the output of the encoder directly
into a priori distribution through a discriminator, not just
through KL divergence to approximate a priori distribution.
The generated robust embeddings are proved to have bet-
ter performance on link prediction and node clustering than
VGAE. The time complexity of ARVGA is O(n2) in each

123

S. Xiang et al.

epoch. Thus, the complexity of training and graph inference
is O(e × n2) and O(n2), respectively. Recall that e denotes
the number of epochs required in the training process.

NetGAN. NetGAN [10] is the first model to generate
graphs through random walks. It leverages long short-term
memory [26] (LSTM) to generate random walk sequences.
The longer the sequence length of random walks, the more
topology information is captured by LSTM. Note that when
the sequence length is 2, NetGANwill directly learn the edge
probabilities.

As the input ofNetGAN’s generator component, the initial
cell state C0 and the initial hidden state h0 of NetGAN are
mapped from a multivariate normal distribution as follows:

z ∼ N (0, I)

C0 = MLP(C)(z), h0 = MLP(h)(z)
(17)

where MLP(·) consists of two linear layers and tanh activa-
tion. Then LSTM parameterized by θ can start inferring the
random walks as follows:

(p1,C1, h1) = LSTM(C0, h0, 0),

v1 ∼ Cat(Softmax(p1)),

(pT ,CT , hT) = LSTM(CT−1, hT−1, vT−1),

vT ∼ Cat(Softmax(pT)),

(18)

where Cat denotes a categorical distribution. So far, the gen-
eratorG can sequentially generate randomwalks (v1, . . . , vT).
However, pT and vT have a dimension of n, resulting in a
high computation cost in LSTM. Therefore, an up-project
matrix Wup ∈ R

h×n is used to map the output of LSTM
oT ∈ R

h into R
n . A down-project matrix Wdown ∈ R

n×h is
used to map node vt into a low-dimensional input of LSTM.
Generated random walks and real random walks are fed into
the discriminatorD parameterized by another LSTM, which
outputs a probability of the random walk’s being real. The
model parameters are trained throughWasserstein GAN [24]
(WGAN) framework.

After updating the parameters of the generator G, inferred
random walks through G can be decoded as new graphs
through assembling the adjacency matrix. A score matrix
S represents the appearance probability of each edge in
generated random walks. Then each edge (i, j) is sampled
from the categorical distribution parameterized by p(·,·) with
p(i, j) = si, j∑

u,v su,v
. The edges of thewhole graph are generated

by selecting the top m entries of the score matrix. Because
of the edge-sampling strategy of NetGAN, the graph gener-
ation process has a complexity of O(n2), and the numbers
of nodes and edges are fixed to n and m, respectively.

CondGEN. The conditional variational autoencoder with a
generative adversarial network (CondGEN) was proposed in

[73]. The encoding and generation of the conditional graph
structure are also considered. Permutation-invariance and
generating arbitrary size of graphs are the main contributions
of CondGEN and are achieved by modifying the derivation
of stochastic latent variable Z of VGAE below:

μ̄ = 1

n

n∑

i=1

gμ(X,A)i ,

σ̄ 2 = 1

n2

n∑

i=1

gσ (X,A)2i ,

q(zi |X,A) ∼ N (z̄|μ̄, diag(σ̄ 2))

(19)

where g(X,A) = GNNW2(ReLU(GNNW1(X,A))) is a
two-layer GNN model. The modeling of z̄ is essential for
preserving permutation-invariance and can be regarded as
the graph embedding of the graph G. Samples from z̄ can
also be decoded into a new graph through an FNN-based
decoder. For the adversarial optimizing objectives, different
from ARVGA, CondGEN is designed to learn the generative
distribution of observed data as follows:

Lgan = log(D(A)) + log(1 − D(G(Zp)))+
log(1 − D(G(Zq)))

(20)

where D is a two-layer GNN followed by a two-layer
FNN and Zp and Zq are the latent variables sampled from
both the Gaussian prior and the latent variable distribu-
tion q(zi |X,A), respectively. CondGEN is designed to learn
the structure distributions of a set of graphs, then generate
permutation-invariant graphs, which can be controlled by the
corresponding conditions. Due to the spectral embeddings’
derivation in CondGEN, it has a training time complexity
O(n3) at each epoch. In our experiment, we leverage Cond-
GEN to generate new graphs without any encoding process.
Thus, CondGEN has an inference time complexity O(n2).

3.5 Summary

In this subsection, we provide a summary of graph generators
in terms of time complexity and space complexity. We also
evaluate important properties of graph generators including
permutation invariance and community preserving.

Time Complexity In Table 2, we report the time complexity
of each generator for the learning (training) process and the
new graph inference process. Generally, there is no training
process for the simple model-based generators and they can
easily calculate the desired parameters with time complexity
O(m + n). Due to the simplicity of the model, its inference
time is very efficient as well. It takes muchmore learning and
inference time for generators from other categories. A dom-
inant cost of many graph generators is the generation of the

123

General graph generators: experiments, analyses, and improvements…

Ta
bl
e
2

C
om

pl
ex
ity
,s
ca
la
bi
lit
y,
an
d
pe
rm

ut
at
io
n
in
va
ri
an
ce

of
ge
ne
ra
lg

ra
ph

ge
ne
ra
to
rs
.

G
ra
ph

ge
ne
ra
to
r

T
ra
in
in
g
tim

e
co
m
pl
ex
ity

pe
r
E
po

ch
In
fe
re
nc
e
T
im

e
co
m
pl
ex
ity

Sp
ac
e
C
om

pl
ex
ity

Pe
rm

ut
at
io
n

In
va
ri
an
ce

Pr
es
er
vi
ng

co
m
m
un

ity

E
-R

[2
0]

−
O

(m
+

n)
O

(m
+

n)
�

W
-S

[6
6]

−
O

(n
k)

O
(m

+
n)

�
B
-A

[3
]

−
O

(n
k)

O
(m

+
n)

R
T
G
[2
]

−
O

(m
lo
g
n)

O
(m

+
n

+
K

2
)

B
T
E
R
[3
5]

−
O

(m
+

n)
O

(m
+

n)

SB
M

[2
7]

−
O

(m
+

n)
O

(m
+

n
+

B
2
)

�
D
C
SB

M
[3
1]

−
O

(m
+

n)
O

(m
+

n
+

B
2
)

�
R
-M

A
T
[1
5]

−
O

(m
lo
g
n)

O
(m

+
n)

�
M
M
SB

[1
]

O
(n

2
)

O
(n

2
)

O
(n

2
)

�
K
ro
ne
ck
er

[3
7]

O
(m

lo
g
n)

O
(m

lo
g
n)

O
(m

+
n

+
lo
g
n)

�
G
ra
ph
R
N
N
[7
7]

O
(n

2
)

O
(n

2
)

O
(n

2
)

G
R
A
N
[4
2]

O
(n

2
)

O
(n

2
)

O
(m

+
n)

B
iG

G
[1
8]

O
(n

2
)

O
(n

2
)

O
(m

+
n

+
lo
g
n)

V
G
A
E
[3
4]

O
(n

2
)

O
(n

2
)

O
(m

+
n)

�
�

G
ra
ph

ite
[2
3]

O
(n

2
)

O
(n

2
)

O
(m

+
n)

�
�

SB
M
G
N
N
[4
6]

O
(n

2
)

O
(n

2
)

O
(m

+
n)

�
�

A
R
V
G
A
[4
9]

O
(n

2
)

O
(n

2
)

O
(m

+
n)

�
�

N
et
G
A
N
[1
0]

O
(n

2
)

O
(n

2
)

O
(n

2
)

�
�

C
on
dG

E
N
[7
3]

O
(n

3
)

O
(n

2
)

O
(m

+
n)

�

n
an
d
m

ar
e
th
e
am

ou
nt

of
no
de
s
an
d
ed
ge
s,
re
sp
ec
tiv

el
y.
k
is
th
e
am

ou
nt

of
ed
ge
s
at
ta
ch
ed

to
th
e
pr
ev
io
us

no
de
.K

is
th
e
nu
m
be
r
of

ch
ar
ac
te
rs
in

th
e
ke
yb
oa
rd
.
B
is
th
e
am

ou
nt

of
bl
oc
ks
.m

is
th
e

am
ou
nt

of
ed
ge
s.
S
is
th
e
le
ng

th
of

st
ri
de

123

S. Xiang et al.

adjacency matrix, leading to a time complexity O(n2) in the
inference process. For deepneural network-based generators,
the learning time is also determined by the structure of the
networks and the number of epochs. Particularly, GNN and
RNN are two types of deep neural networks used by existing
general graph generators, with time complexity O(m + n)

and O(n2), respectively, at each epoch. Due to the spectral
embeddings’ derivation in CondGEN, it has time complexity
O(n3) at each epoch of the training process. We remark that
the total training time also relies on the number of epochs
required. In our experiments, GraphRNN takes much more
training time compared to CondGEN due to the former’s
greater number of epochs involved in the training process.
Moreover, the practical performance of the graph generators
also depends on whether they can be easily paralleled in the
system.

Space complexity Table 2 reports the space complexity of
each generator. Generally, several generators are very space-
efficient as they only need to keep the observed graphs
with space O(m + n). Note that for deep neural network-
based generators, we assume the dimensionality of the latent
variables (i.e., embeddings) of vertices is a constant (usu-
ally 32, 64 or 128 in practice). For graph neural networks
(GNNs), we store the adjacency matrix and identity matrix
as a sparse matrix, which costs O(m + n) instead of O(n2).
Thus, the corresponding space of the GNN-based generator
is O(m+n). For general recurrent neural networks (RNNs),
such as GraphRNN-S and GRAN, we store the long-term
memory of a sequence of nodes, with a space consump-
tion dependent on the number of nodes. Thus, including
the observed graphs, the corresponding space of the RNN-
based generator is O(m + n). It is also shown that MMSB,
GraphRNN, and NetGAN are the most space-consuming
generators becauseMMSB and GraphRNN need to maintain
the probabilistic graph for all n nodes, while NetGAN needs
to assemble a score matrix with O(n2) space complexity.

Permutation invariance property Table 2 shows the gener-
ators with the permutation invariance property. The permuta-
tion invariance property implies that we can set an arbitrary
order of graph nodes for the learning process, and it has no
effect on the simulation and generation results of the graph
generator. Graph generators with the permutation invariance
property can generalize to large graphs without considering
the order of the nodes, which may come up with O(n!) pos-
sible instances.

Community preserving property Table 2 also indicates the
generators with the community preserving property. Graph
generators need to preserve community structures of the
observed graphs well. For instance, simulated graphs with
similar community structures can be utilized to enhance com-
munity detection.

4 Improvement

The experience and insights gained from this study enable us
to engineer a new method, namely Scalable Graph Autoen-
coder (SGAE), which can achieve a good trade-off between
graph simulation quality and efficiency (scalability).

Our proposed method follows the framework of VGAE
[34], with new techniques in the following three aspects.

EncoderWefirst leveraged GraphNeural Networks (GNNs)
to encode graph and infer node representations. Here the
implementation of GNNs is formulated as follows:

Ā = D̄− 1
2 (Ã)D̄− 1

2

Xi+1 = GNNi (Xi , Ā) = ĀXiWi

(21)

where Ã is a self-loop adjacency matrix with Ã = A + In ,
D̄ is the degree matrix of Ã with D̄ = ∑

j Ãi, j , X0 is set
default as In , and Wi is the parameters of the i-th layer of
GNNs. To handle the over-smoothing problem, we use the
PairNorm [79] layer to retain the distance of node representa-
tions after each layer of GNNs. The normalization procedure
is formulated as follows:

xci =xi − 1

n

n∑

i=1

xi

x p
i =s · xci

||xci ||2
(22)

where xi is the i-th node’s representation, xci is the node-
wise centered node representation, x p

i is the feature-wise
normalized node representation, and s is the hyperparameter
to adjust the distance between node representations. Our pro-
posed encoder adds thePairNorm layer before each activation
layer. Note that the first layer ofGNNs requires themaximum
usage ofmemory. For example,A requiresO(m),X0 requires
O(n), and W0 ∈ R

n×d requires O(n × d), where d is the
dimension of node representations. Therefore, the time and
space complexity outcomes of the encoder are O(n+m) and
O(m + n × d), respectively.

Decoder In this paper, we choose to decode one subgraph
with ns nodes per epoch when training our proposed GAE.
After obtaining the node representations from the encoder
per epoch, we choose ns nodes as our temporary ground
truth subgraph As . The corresponding output of the decoder
is calculated as follows:

P(Ai, j = 1) = σ(ZiZT
j)

P(Â) =
∏

i, j∈Vs
P(Ai, j = 1) (23)

123

General graph generators: experiments, analyses, and improvements…

where σ denotes the Sigmoid activation function, Â is the
estimated adjacency matrix of the subgraph with ns nodes,
and Vs denotes the set of nodes in the subgraph.

As mentioned by Guillaume Salha et al. [55], nodes with
high degrees need to be trained more frequently to avoid
losing important node information. Thus, we choose sub-
graphs with a strategy according to node degrees as follows:
Pi = degi∑n

i=1 degi
, where Pi is the probability to select node i .

In every epoch, we randomly sample nodes to assemble one
subgraph for the training purpose. Note that ns is an impor-
tant hyperparameter to make a trade-off between efficiency
and effectiveness. However, generating the whole graph after
the entire training process still requires O(n2) time and space
complexity. To address this issue, we follow the implemen-
tation of assembling adjacency matrix in NetGAN [10] and
improve it as follows: (i) We obtain the latent variables of
n nodes; (ii) we decode one row of the adjacency matrix
through sampling edges for each node, and then clear the
memory of zero entry; (iii) we repeat the step (ii) until all
rows are generated. This procedure requires O(m+n) space
complexity, which is affordable in generating large graphs.
Optimization Since the loss calculated by each epoch is
biased from the real loss L, we use an approximate loss
function Lns to optimize the model parameters. After each
sampling, the connection status of the to-be-simulated sub-
graph has changed. Therefore, we dynamically sample the
negative edges based on the subgraph to speed up the train-
ing process. Now the approximate loss function is formulated
as follows:

Lns = 1

ms
[

∑

(i, j)∈Epos

(1 − Âi, j) log Âi, j

+
∑

(i, j)∈Eneg

Âi, j log(1 − Âi, j)]
(24)

where ms denotes the number of edges in the subgraph, As ,
Epos , and Eneg are the sets of positive and sampled nega-
tive edges from As , respectively, and Âi, j is the estimated
probability derived from the decoder.

Overall, our proposed graph generator is a autoencoder
based and we give it the name, Scalable Graph Autoencoder
(SGAE). SGAE inherits the excellent expression perfor-
mance of the graph generator based on the neural network
and meanwhile achieves a significant speedup in the training
process compare to other deep neural network-based gener-
ators. Particularly, the training time complexity is O(n +m)

and O(n2s) in each epoch for encoder and decoder, respec-
tively, where ns is the size of the sampled subgraph during
the training process. The inference time complexity remains
O(n2), and the space complexity of SGAE is O(m+n+n2s).
Like other autoencoder-based generators, SGAE has the

permutation-invariance and community preserving proper-
ties.

5 Evaluation

We integrated all included models and conducted extensive
experiments to evaluate the performance of graph genera-
tors. The details of our evaluation platform are provided in
Sect. 5.1. The experiment setup is provided in Sect. 5.2.
Experiments were conducted in graph simulation quality,
preserving community structure, parameter sensitivity, and
model scalability in Sect. 5.3, Sect. 5.4, Section 5.5, and
Sect. 5.6, respectively. Section 5.6 investigates the efficiency
and the scalability of the graph generators. Finally, accord-
ing to our comprehensive experimental study, a roadmap of
recommendations is provided in Sect. 5.7 for users.

5.1 Toolkit Used for Performance Evaluation.

To help researchers and practitioners apply the general graph
generators in their applications or make a comprehensive
evaluation of their proposed general graph generators, we
implement an end-to-end platform that is now publicly avail-
able1. In the detailed instruction of this toolkit, we show: (i)
how to apply an existing general graph generator in user’s
application; (ii) how to include a new, developed general
graph generator; and (iii) the details of the evaluation metrics
and how to include them for performance evaluation. Cur-
rently, a Python interface is provided in our package and other
programming languages will be considered in the future.

Below we briefly introduce the characteristics of the plat-
form.

Modularized Pipelines We specify the data type as the
list of Graph objects implemented under the NetworkX
library [25]. The graph generators and evaluation metrics
are implemented with the same type of input and output. The
experimental result can be obtained directly by one-line com-
mand including a dataset, a graph generator, and a specific
evaluation metric.

Customization and extension We allow users to incorpo-
rate their own datasets, graph generators, and new evaluation
metrics into their local libraries by integrating their own
implementations into respective source code scripts. We also
welcome other developers to contribute to our platform on
Github.

Note that all experiments in this paper are conducted on
this platform.

1 https://github.com/xiangsheng1325/GraphGenerator

123

https://github.com/xiangsheng1325/GraphGenerator

S. Xiang et al.

5.2 Experiment setup

We introduce the experimental datasets, metrics, and param-
eter settings in this subsection.
Dataset We have collected several representative graph
datasets used by existing general graph generators, which
are shown in Table 3. Details of each dataset are provided as
follows.

– Citation Networks are undirected graphs that consist
of papers and their citation relationships. The Cora and
Cora-ML datasets contain 2708 and 2810 machine learn-
ing publications, respectively. The Citeseer and PubMed
datasets contain 3327 and 19717 publications, respec-
tively.

– Biological Networks are graph-structure data extracted
by real biological information. Protein dataset contains
620 nodes, each node denoting an amino acid. There
are edges between amino acids when their distances are
less than 6 Angstroms. Protein–protein Interaction (PPI)
dataset contains 2361 nodes, each node representing one
yeast protein. Edges are generated if there are interactions
between two proteins.

– Social Networks are graph-structure data extracted by
real social relationships. Deezer dataset contains 47538
nodes and each node signifies a user. The edges designate
the friendship among users. The Facebook dataset con-
tains 50515 nodes, each node denoting one page. Edges
are generated if there are mutual likes among them.

– Other Datasets are graph-structure data from real
objects. 3D point cloud dataset contains 5037 nodes,
denoting the points of a household object. Edges are
generated for k-nearest neighbors which are measured
w.r.t Euclidean distance of the points in 3D space.
Autonomous system dataset contains 6474 nodes, which
represent routers of computer networks. Edges denote the
communication among routers.

Note that, for some observed data with isolated nodes or
self-loop edges, experiments on Recurrent Neural Network
(RNN)-based graph generators (e.g., GraphRNN [77] and
BiGG [18]) and NetGAN cannot be conducted successfully.
Therefore, the self-loop edges of all datasets are removed.
The largest connected component is selected as the input of
the graph generative model.

5.2.1 Evaluating metrics

We collected and designed appropriate evaluating metrics
to measure the difference between the original graph and
the generated graph. The metrics used for graph simulation
quality can be categorized into the following four aspects.

– Node Distributions are measured by using the maxi-
mummean discrepancy (MMD) overDegree,Clustering
Coefficient, Spectral Embedding, Betweenness Central-
ity, and Closeness Centrality distributions. The squared
MMD between two sets of samples from distributions p
and q can be derived as:

MMD2(p||q) = Ex,y∼p[k(x, y)] + Ex,y∼q [k(x, y)]
− 2Ex∼p,y∼q [k(x, y)].

(25)

where k denotes the associated kernel. We use the earth
mover’s distance (EMD) as the Gaussian kernels, which
is formulated as:

EMD(p, q) = inf
γ∈∏

(p,q)
E(x,y)∼γ [||x − y||] (26)

where
∏

(p, q) denote the set of all distributions whose
marginals are p and q, respectively, and γ is a transport
plan.

– Graphlet Distributions are measured through comput-
ing the number of occurrences of all graphlets within 4
nodes and using Orbit MMD to formulate the distance
between two distributions with a Gaussian kernel of the
total variation (TV), which is formulated as:

TV(p, q) = Ei [||πp(i) − πq(i)||] (27)

where πp(i) denotes probability of the i-th graphlet in
graph distribution p.

– Graph Statistics are measured by 3 metrics: Charac-
teristic path length (CPL), Gini Coefficient (GINI), and
Power-law Exponent (PLE). CPL denotes the average
value of the minimum path length of total node pairs.
GINI denotes the inequality in the nodes’ degree distri-
bution. PLE is the exponent of the power-lawdistribution.
All metrics reported in the experiments represent the dis-
tances between generated graphs and observed graphs.

– Community Structures are measured in two steps:
modeling community structure and compare the differ-
ences between community ownerships of nodes. For one
generated/observed graph, we first use the louvain [9]
community detection algorithm to obtain its community
memberships of nodes. Then we leverage Normalized
Mutual Information (NMI) and Adjusted Rand Index
(ARI) to measure the similarity of the community struc-
ture between two graphs.

Note that for all these graph simulation quality-related
metrics, the smaller value is preferred in the performance
evaluation. For all MMD-based evaluation metrics, the stan-
dard deviation of Orbit is set to 30, and the other standard

123

General graph generators: experiments, analyses, and improvements…

Table 3 Benchmark datasets
included in the experiments

Category Dataset #Nodes #Edges

Citation Networks Cora [58] 2708 5429

Citeseer [58] 3327 4732

PubMed [58] 19717 44338

Cora-ML [45] 2810 7981

Biological Networks Protein [19] 620 1098

PPI [13] 2361 6646

Social Networks Deezer [54] 47538 222887

Facebook [54] 50515 819090

Other Datasets 3D Point Cloud [48] 5037 10886

Autonomous System [38] 6474 12572

EU Email [38] 265214 364481

Google Pages [39] 875713 4322051

deviations are set to 1.0. We use the implementation ofOrbit
counting in [77] to calculate 4-node graphlets to improve
efficiency. We repeat sampling 200 nodes from the observed
graph to estimate the betweenness centrality of each node.
Other settings of evaluating metrics are the same as [18] and
[10].

Apart from the graph simulation quality-related metrics,
we also evaluate the performance of the graph generators
from many other perspectives including training time, infer-
ence time (i.e., the time used for generating a new graph),
scalability, space (i.e., memory consumption), robustness,
community preserving, stableness, and sensitivity.

5.2.2 Parameter Settings

This section introduces the configuration and parameter set-
tings. By default, we use the best parameter setting given
by the original authors. The graph generators and evaluating
scripts are implemented and compiled through Python-3.6,
PyTorch-1.8.1, CUDA-11.1, and GCC-4.8.5 in our exper-
iments. The experiments are operated on a machine with
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, 80 GB
RAM, and NVIDIA RTX 3090 with 24 GB memory. We
use one CPU core and one GPU for every algorithm.

The initiator matrix MI of R-MAT is {0.90.3, 0.30.1}
by default. Following [18,42,77], the maximum previous
number of nodes in RNN-based graph generators (e.g.,
GraphRNN,GRAN, and BiGG) is set as the number of nodes
in the observed graph. The stride of GRAN is 1. For all
autoencoder-based graph generators and ARVGA, the node
attributesX of each graph are configured based on the matrix
In , whichmeans each node is represented by a one-hot vector.
Moreover, in the training process ofGAEs andARVGA, 20%
of observed edges are being masked. For assembling a graph
in NetGAN, the number of random walks sampled from the

trained model is 1000. We leverage spectral embeddings as
the input node features of CondGEN.

5.3 Graph simulation quality

This section evaluates the quality of simulated graphs via a
set of evaluation metrics. For each generator, we report the
average result value of 10 repeated experiments.

First, we report the experimental results for all graph sim-
ulation quality-related metrics. Table 4 summarizes all graph
generators’ performances on the protein dataset. Accord-
ing to the 14th and 15th rows of Table 4, we can see that
GraphRNN and its variant GraphRNN-S outperform other
graph generators. Apart fromGraphRNN and GraphRNN-S,
GRAN and BiGG also perform well for the protein dataset.
It can be seen that the quality of graphs GraphRNN gener-
ated is the best. Other graph generators cannot achieve the
best performance in all metrics as well. Taking W-S as an
example, according to Table 5, W-S has achieved the best
performance in the first column, i.e., degreemetric. However,
W-S performs poorly in other evaluatingmetrics. Comparing
all graph generators and all evaluating metrics in Table 5 we
come to the finding that no graph generator can beat other
graph generators on all evaluatingmetrics in theAutonomous
Systems dataset. This is not restricted to this dataset; we
also find that in six datasets (i.e., Cora, Citeseer, Cora-ML,
PPI, 3D Point Cloud, Autonomous Systems), no graph gen-
erator beats others in all evaluating metrics. Due to space
constraints, those experimental results which indicate simi-
lar findings are omitted in the text.

We also report the results of several representative evalu-
atingmetrics on all datasets.We provide the quality details of
each generator for Degree, Clustering Coefficient, and Orbit
in Table 6, Table 7, and Table 8, respectively. We can see that
SGAE achieves seven out of twelve best results in Degree
from Table 6, five out of twelve best results in Clustering

123

S. Xiang et al.

Ta
bl
e
4

E
va
lu
at
io
n
re
su
lts

on
pr
ot
ei
n
da
ta
se
t

G
ra
ph

G
en
er
at
or

D
eg
re
e.

C
lu
st
er
.

O
rb
it

Sp
ec
.

B
et
w
ee
n.

C
lo
se
.

C
ha
ra
ct
.P

at
h
L
en
.

G
in
iC

oe
ffi
.

Po
w
er
-l
aw

E
xp

o.

E
-R

5.
01
e−

2
1.
92

6.
23
e−

2
0.
14
2

0.
75
5

3.
42
e−

2
17
.5

8.
86
e−

2
0.
12

W
-S

0.
13
9

1.
96

0.
97

0.
20
3

0.
11
5

0.
14
4

5.
25

2.
46
e−

2
0.
84
2

B
-A

5.
54
e−

2
1.
77

1.
18

0.
32
7

0.
75
4

7.
83
e−

2
19
.4

0.
15
9

1.
43

R
T
G

9.
71
e−

2
1.
29

0.
28
2

0.
35
1

0.
78
1

9.
40
e−

2
17
.8

9.
89
e−

2
3.
28
e−

2

B
T
E
R

1.
91
e−

2
1.
01

0.
27
0

0.
26
3

0.
23
4

6.
12
e−

2
10
.2

9.
63
e−

2
3.
01
e−

2

SB
M

5.
38
e−

2
1.
18

0.
10
2

0.
17
5

0.
73
3

3.
20
e−

2
12
.4

4.
87
e−

2
5.
13
e−

2

D
C
SB

M
9.
43
e−

2
0.
89

0.
36
6

0.
21
5

0.
74
9

4.
27
e−

2
13
.3

0.
14
2

8.
14
e−

2

R
-M

A
T

0.
25
8

0.
98

1.
18

0.
32
3

0.
70
7

0.
13
1

19
.7

0.
33
5

0.
25
8

K
ro
ne
ck
er

0.
10
1

1.
95

1.
96

0.
26
8

0.
77
1

5.
74

e−
2

18
.5

0.
13
2

3.
12
e−

2

M
M
SB

0.
11
6

1.
94

0.
32
6

0.
19
9

0.
75
8

6.
25
e−

2
17
.9

0.
17
3

0.
18
6

V
G
A
E

0.
44
7

1.
56

1.
87

0.
6

0.
53
5

0.
35
1

18
.2

0.
47
7

0.
12
6

G
ra
ph
ite

0.
49
8

2
2

0.
62
9

0.
59
1

0.
42
2

20
.1

0.
47
3

0.
13
4

SB
M
G
N
N

0.
51
3

1.
6

1.
94

0.
65

0.
66
8

0.
37
4

20
.5

0.
52

0.
20
9

G
ra
ph
R
N
N

2.
32

e−
2

0.
40
7

6.
77
e−

2
5.
74
e−

2
0.
15
9

2.
18
e−

2
4.
85

1.
16

e−
2

2.
12

e−
2

G
ra
ph
R
N
N
-S

1.
08

e−
2

0.
44
3

2.
92

e−
3

5.
61
e−

2
3.
68

e−
2

1.
87

e−
2

1.
26

2.
45
e−

2
4.
41
e−

2

G
R
A
N

4.
33
e−

2
1.
2

0.
73
4

0.
18
3

0.
72
2

3.
13
e−

2
18
.3

1.
71
e−

2
0.
63
1

B
iG
G

5.
31
e−

2
1.
87

7.
99
e−

2
0.
11
9

0.
73
7

3.
21
e−

2
17
.3

7.
32
e−

2
0.
17
6

A
R
V
G
A

0.
46
5

1.
33

1.
28

0.
42

0.
76
6

0.
26
3

19
.5

0.
50
1

0.
10
5

N
et
G
A
N

3.
77

e−
2

1.
51

0.
12
8

0.
13
6

0.
77
4

3.
30
e−

2
16
.8

6.
37
e−

2
5.
42
e−

2

C
on
dG

E
N

0.
31
2

1.
15

1.
1

0.
44
2

0.
54
7

0.
37
6

20
.8

0.
36
2

0.
29
5

SG
A
E

3.
54
e−

2
1.
62

0.
23

0.
58
5

0.
60
6

0.
34
8

19
.8

0.
29
8

0.
46
9

123

General graph generators: experiments, analyses, and improvements…

Ta
bl
e
5

E
va
lu
at
io
n
re
su
lts

on
au
to
no

m
ou

s
sy
st
em

da
ta
se
t

G
ra
ph

G
en
er
at
or

D
eg
re
e.

C
lu
st
er
.

O
rb
it

Sp
ec
.

B
et
w
ee
n.

C
lo
se
.

C
ha
ra
ct
.P

at
h
L
en
.

G
in
iC

oe
ffi
.

Po
w
er
-l
aw

E
xp

o.

E
-R

6.
75
e−

2
0.
12
7

2
6.
57
e−

2
0.
77
8

0.
32
8

8.
03

0.
22
2

2.
44

e−
2

W
-S

8.
54

e−
3

0.
12
7

2
7.
37
e−

2
0.
69
7

0.
27
7

97
.2

0.
34
4

0.
28
4

B
-A

8.
81
e−

2
0.
12
7

1.
17

2.
33
e−

3
0.
63

0.
14
2

5.
16

0.
18
7

1.
22

R
T
G

6.
89
e−

2
9.
45
e−

2
2

9.
78
e−

2
0.
90
1

0.
26
9

5.
05

0.
27

1.
13

B
T
E
R

0.
31
0

4.
78
e−

2
2

7.
32
e−

2
0.
81
4

0.
21
5

3.
76

0.
13

0.
96
7

SB
M

0.
26
4

0.
10
5

2
6.
11

e−
2

0.
77
8

0.
38
7

3.
25

0.
31

0.
65
1

D
C
SB

M
7.
89
e−

2
3.
51
e−

2
1.
32

9.
49

e−
5

0.
53
6

0.
18
4

0.
47
7

3.
89
e−

2
0.
27
1

R
-M

A
T

5.
16

e−
2

6.
17
e−

2
1.
21

3.
53
e−

3
0.
10
2

0.
15
3

2.
83
e−

2
5.
46
e−

2
0.
49
8

K
ro
ne
ck
er

0.
12
6

7.
77

e−
2

1.
08

1.
44
e−

3
0.
16
6

0.
17
5

0.
25
1

3.
75
e−

2
0.
74
3

M
M
SB

6.
26
e−

2
5.
40
e−

2
1.
97

1.
84
e−

4
0.
36
1

5.
51
e−

2
6.
50
e−

2
8.
01
e−

2
0.
14
5

V
G
A
E

8.
04
e−

2
2.
60
e−

2
1.
59

5.
22
e−

4
0.
41

9.
54
e−

2
0.
45
3

0.
18
4

3.
37
e−

2

G
ra
ph
ite

0.
12
1

1.
92

e−
2

2
7.
31
e−

4
0.
46
2

0.
12
3

0.
74
6

0.
21
8

7.
33
e−

2

G
ra
ph
R
N
N

–
–

–
–

–
–

–
–

–

G
ra
ph
R
N
N
-S

–
–

–
–

–
–

–
–

–

G
R
A
N

7.
23
e−

2
8.
58
e−

2
0.
99

2.
67
e−

3
0.
15
5

0.
13

0.
36
4

3.
83
e−

2
0.
5

B
iG
G

0.
10
9

0.
11
9

1.
89

5.
33

e−
2

0.
76
9

0.
34
3

3.
27

0.
25

0.
46
1

A
R
V
G
A

0.
20
1

3.
31
e−

2
1.
12

9.
86
e−

4
0.
41
2

0.
15
8

1.
18

0.
21
8

0.
33
6

N
et
G
A
N

2.
72

e−
2

6.
89
e−

2
1.
07

6.
32
e−

4
0.
15
7

7.
66
e−

2
0.
43
6

5.
97
e−

2
0.
25
1

C
on
dG

E
N

–
–

–
–

–
–

–
–

–

SG
A
E

2.
52
e−

2
3.
47
e−

2
1.
01

6.
93
e−

2
0.
29
6

0.
46

0.
91
2

0.
27
3

0.
84
5

123

S. Xiang et al.

Ta
bl
e
6

E
va
lu
at
io
n
re
su
lts

of
D
eg
re
e
M
M
D
on

al
l1

2
da
ta
se
ts

G
ra
ph

G
en
er
at
or

C
or
a

C
ite
se
er

Pu
bM

ed
C
or
a-
M
L

Pr
ot
ei
n

PP
I

D
ee
ze
r

Fa
ce
bo
ok

3D
Po

in
tC

lo
ud

A
ut
on
om

.S
ys
te
m

E
U
E
m
ai
l

G
oo

gl
e

E
-R

3.
79
e−

3
1.
18
e−

2
4.
38
e−

2
1.
88
e−

2
1.
06
e−

2
4.
41
e−

2
3.
61
e−

2
0.
11

9.
71
e−

2
1.
66
e−

2
6.
40
e−

2
6.
16
e−

2

W
-S

3.
62
e−

2
1.
81
e−

2
2.
44
e−

2
5.
25
e−

2
3.
71
e−

2
3.
26
e−

2
0.
12
8

0.
14

0.
23

2.
09

e−
3

6.
27
e−

2
9.
28
e−

2

B
-A

2.
09
e−

2
2.
17
e−

2
7.
20
e−

2
3.
86
e−

2
1.
34
e−

2
7.
09
e−

2
4.
33
e−

2
8.
03
e−

2
0.
15
1

2.
19
e−

2
8.
97
e−

3
6.
75
e−

2

R
T
G

3.
65
e−

2
2.
82
e−

2
4.
16
e−

3
2.
73
e−

2
0.
14
1

1.
93
e−

2
7.
37
e−

2
0.
10
1

0.
23
2

2.
93
e−

2
5.
37
e−

4
–

B
T
E
R

9.
44
e−

3
2.
02
e−

3
8.
02
e−

3
9.
31
e−

3
1.
37
e−

2
4.
16
e−

3
1.
37
e−

4
3.
28
e−

3
7.
03
e−

2
4.
76
e−

3
3.
33
e−

2
1.
58
e−

3

SB
M

8.
59
e−

3
1.
26
e−

2
6.
55
e−

2
2.
87
e−

2
1.
52
e−

2
5.
34
e−

2
3.
71
e−

2
7.
55
e−

2
8.
24
e−

2
6.
85
e−

2
0.
11
3

5.
86
e−

2

D
C
SB

M
6.
99
e−

3
8.
10
e−

3
1.
52
e−

2
3.
99

e−
3

2.
58
e−

2
7.
83
e−

3
8.
34
e−

4
9.
27
e−

4
8.
18
e−

2
1.
95
e−

2
6.
29
e−

2
2.
44
e−

3

M
M
SB

6.
79
e−

3
8.
27
e−

3
–

5.
58
e−

3
2.
85
e−

2
8.
11
e−

3
–

–
9.
36
e−

2
1.
52
e−

2
–

–

R
-M

A
T

2.
62
e−

2
1.
42
e−

2
2.
84
e−

3
1.
71
e−

2
6.
57
e−

2
2.
96
e−

3
4.
12
e−

2
2.
25
e−

2
0.
17
5

1.
31
e−

2
3.
85
e−

2
1.
51
e−

2

K
ro
ne
ck
er

1.
32
e−

2
1.
24
e−

2
1.
17
e−

2
4.
49
e−

3
2.
38
e−

2
4.
00
e−

3
2.
93
e−

3
1.
34
e−

2
0.
10
2

3.
40
e−

2
6.
35
e−

2
6.
67
e−

3

V
G
A
E

5.
11
e−

2
8.
65
e−

2
0.
15
8

5.
14
e−

2
0.
11
5

5.
71
e−

2
–

–
0.
21
3

2.
15
e−

2
–

–

G
ra
ph
ite

5.
44
e−

2
7.
58
e−

2
0.
17
6

5.
02
e−

2
0.
13
8

0.
1

–
–

0.
19
6

3.
11
e−

2
–

–

SB
M
G
N
N

8.
10
e−

2
0.
11
2

0.
12
8

6.
80
e−

2
0.
14
4

0.
10
7

–
–

0.
16
1

3.
88
e−

2
–

–

G
ra
ph
R
N
N

–
–

–
–

2.
42
e−

3
–

–
–

–
–

–
–

G
ra
ph
R
N
N
-S

7.
69
e−

3
2.
56
e−

2
–

2.
55
e−

2
1.
52

e−
3

4.
13
e−

2
–

–
–

–
–

–

G
R
A
N

7.
06
e−

3
2.
06
e−

2
–

1.
28
e−

2
1.
34
e−

2
3.
37
e−

2
–

–
0.
14
5

2.
00
e−

2
–

–

B
iG
G

3.
05
e−

3
1.
09

e−
3

–
8.
58
e−

3
1.
58
e−

2
3.
01
e−

2
–

–
0.
10
5

2.
83
e−

2
–

–

A
R
V
G
A

7.
92
e−

2
0.
11
4

0.
17

2.
40
e−

2
0.
12
2

5.
12
e−

2
–

–
0.
20
9

5.
24
e−

2
–

–

N
et
G
A
N

1.
28

e−
3

1.
61
e−

3
–

4.
71
e−

3
9.
04
e−

3
1.
02
e−

2
–

–
6.
89
e−

2
6.
43
e−

3
–

–

C
on
dG

E
N

4.
69
e−

2
1.
40
e−

2
–

2.
94
e−

2
8.
61
e−

2
1.
22
e−

2
–

–
0.
17
5

–
–

–

SG
A
E

6.
37
e−

3
2.
91
e−

3
2.
06

e−
3

5.
29
e−

3
2.
92
e−

3
1.
84

e−
3

1.
30

e−
4

8.
69

e−
4

6.
12

e−
2

2.
90
e−

3
1.
97

e−
4

9.
38

e−
4

123

General graph generators: experiments, analyses, and improvements…

Ta
bl
e
7

E
va
lu
at
io
n
re
su
lts

of
C
lu
st
er
in
g
C
oe
ffi
ci
en
t
M
M
D
on

al
l1

2
da
ta
se
ts

G
ra
ph

G
en
er
at
or

C
or
a

C
ite
se
er

Pu
bM

ed
C
or
a-
M
L

Pr
ot
ei
n

PP
I

D
ee
ze
r

Fa
ce
bo
ok

3D
Po

in
tC

lo
ud

A
ut
on
om

.S
ys
te
m

E
U
E
m
ai
l

G
oo
gl
e

E
-R

7.
35
e−

2
3.
90
e−

2
1.
46
e−

2
0.
10
1

1.
72
e−

2
4.
01
e−

2
0.
11
7

0.
14
6

5.
97
e−

2
3.
29
e−

2
2.
19
e−

3
0.
13
2

W
-S

7.
64
e−

2
4.
03
e−

2
1.
46
e−

2
0.
10
4

1.
98
e−

2
4.
22
e−

2
0.
12

0.
15
1

6.
05
e−

2
3.
31
e−

2
2.
19
e−

3
0.
13
1

B
-A

6.
22
e−

2
3.
36
e−

2
1.
37
e−

2
8.
18
e−

2
1.
38
e−

2
1.
96
e−

2
0.
10
6

0.
12
4

5.
80
e−

2
3.
31
e−

2
2.
19
e−

3
0.
13

R
T
G

3.
16
e−

2
4.
24
e−

2
2.
93
e−

2
2.
83
e−

2
2.
23
e−

2
2.
11
e−

2
8.
02
e−

2
0.
10
5

0.
11
8

9.
64
e−

3
7.
20
e−

4
–

B
T
E
R

1.
37

e−
3

3.
15
e−

3
3.
89
e−

3
3.
43
e−

3
2.
51
e−

3
1.
63
e−

2
2.
84
e−

3
1.
99
e−

2
1.
18

e−
2

8.
40
e−

3
4.
24
e−

3
1.
99
e−

2

SB
M

4.
90
e−

2
2.
14
e−

2
1.
05
e−

2
7.
48
e−

2
6.
11
e−

3
1.
84
e−

2
9.
95
e−

2
0.
13

4.
57
e−

2
2.
79
e−

2
1.
99
e−

3
0.
12

D
C
SB

M
2.
82
e−

2
1.
10
e−

2
3.
65
e−

3
4.
02
e−

2
4.
26
e−

3
7.
79
e−

3
9.
34
e−

2
3.
98
e−

2
4.
66
e−

2
9.
43
e−

3
2.
73
e−

4
8.
92
e−

2

M
M
SB

6.
44
e−

2
3.
29
e−

2
–

7.
99
e−

2
1.
76
e−

2
1.
96
e−

2
–

–
5.
96
e−

2
1.
50
e−

2
–

–

R
-M

A
T

4.
12
e−

2
1.
78
e−

2
2.
02
e−

3
4.
25
e−

2
4.
33
e−

3
8.
53
e−

3
3.
19
e−

2
1.
89
e−

2
4.
58
e−

2
1.
58
e−

2
1.
52
e−

3
0.
10
6

K
ro
ne
ck
er

6.
94
e−

2
3.
80
e−

2
1.
08
e−

2
8.
36
e−

2
1.
92
e−

2
1.
51
e−

2
0.
11
3

9.
46
e−

2
6.
04
e−

2
2.
02
e−

2
2.
03
e−

3
0.
13

V
G
A
E

3.
91
e−

2
2.
00
e−

2
1.
06
e−

2
5.
77
e−

2
4.
12
e−

2
1.
43
e−

2
–

–
5.
43
e−

2
7.
07
e−

3
–

–

G
ra
ph
ite

4.
14
e−

2
1.
92
e−

2
1.
01
e−

2
5.
83
e−

2
3.
96
e−

2
2.
05
e−

2
–

–
4.
83
e−

2
5.
21
e−

3
–

–

SB
M
G
N
N

4.
36
e−

2
2.
05
e−

2
1.
00
e−

2
6.
03
e−

2
2.
90
e−

2
2.
09
e−

2
–

–
4.
70
e−

2
5.
62
e−

3
–

–

G
ra
ph
R
N
N

–
–

–
–

1.
33
e−

3
–

–
–

–
–

–
–

G
ra
ph
R
N
N
-S

2.
52
e−

2
1.
33
e−

2
–

7.
52
e−

2
3.
20
e−

3
3.
12
e−

2
–

–
–

–
–

–

G
R
A
N

6.
66
e−

2
1.
49
e−

2
–

6.
19
e−

2
7.
57
e−

3
2.
50
e−

2
–

–
0.
10
2

2.
25
e−

2
–

–

B
iG
G

7.
15
e−

2
3.
79
e−

2
–

9.
32
e−

2
1.
45
e−

2
3.
13
e−

3
–

–
4.
96
e−

2
3.
14
e−

2
–

–

A
R
V
G
A

2.
36
e−

2
1.
34
e−

2
7.
19
e−

3
1.
84

e−
2

1.
22
e−

2
5.
90
e−

3
–

–
4.
03
e−

2
8.
47
e−

3
–

–

N
et
G
A
N

1.
08
e−

2
2.
76

e−
3

–
5.
00
e−

2
6.
62
e−

3
1.
87
e−

2
–

–
1.
71
e−

2
1.
88
e−

2
–

–

C
on
dG

E
N

0.
10
6

0.
10
4

–
9.
83
e−

2
0.
16
5

9.
92
e−

2
–

–
0.
19
6

–
–

–

SG
A
E

1.
99
e−

2
2.
73
e−

2
1.
79

e−
3

2.
08
e−

2
1.
83
e−

2
1.
03
e−

2
1.
61
e−

3
1.
31
e−

2
3.
64
e−

2
1.
54
e−

2
1.
70

e−
4

5.
94

e−
3

123

S. Xiang et al.

Ta
bl
e
8

E
va
lu
at
io
n
re
su
lts

of
O
rb
it
M
M
D
on

al
l1

2
da
ta
se
ts

G
ra
ph

G
en
er
at
or

C
or
a

C
ite
se
er

Pu
bM

ed
C
or
a-
M
L

Pr
ot
ei
n

PP
I

D
ee
ze
r

Fa
ce
bo
ok

3D
Po

in
tC

lo
ud

A
ut
on
om

.S
ys
te
m

E
U
E
m
ai
l

G
oo
gl
e

E
-R

0.
20
4

3.
83
e−

2
2.
08
e−

2
0.
99
9

2.
69
e−

4
0.
56
4

3.
28
e−

4
2

3.
65
e−

5
2

2
0.
77

W
-S

0.
61
6

0.
10
7

3.
26
e−

2
1.
91

1.
20
e−

2
1.
51

1.
29
e−

2
2

3.
63
e−

4
2

2
0.
96
8

B
-A

0.
17
7

9.
98

e−
2

2.
72
e−

3
0.
10
5

0.
34
9

6.
76
e−

2
4.
73
e−

2
2

0.
13
4

2
2

0.
25
4

R
T
G

2
2

2
2

2
2

2
2

2
2

2
–

B
T
E
R

5.
38
e−

2
2.
92

e−
3

1.
89
e−

3
0.
12
7

2.
89
e−

3
2.
77
e−

2
2.
45
e−

5
0.
48
1

5.
60
e−

5
2

2
0.
13
8

SB
M

0.
14
6

2.
76

e−
2

5.
35
e−

3
0.
56
5

9.
42
e−

4
0.
20
7

1.
90
e−

4
1.
99

1.
64
e−

4
2

2
0.
43
5

D
C
SB

M
4.
80
e−

2
5.
40
e−

3
2.
65
e−

4
0.
23
1

2.
14
e−

3
9.
85
e−

3
5.
83
e−

5
0.
56
2

1.
76
e−

4
2

2
0.
26
9

M
M
SB

2.
18
e−

2
7.
20
e−

3
–

9.
49
e−

2
9.
65
e−

4
3.
31
e−

2
–

–
1.
01
e−

4
2

–
–

R
-M

A
T

1.
83

1.
75

1.
91

2
1.
92

1.
99

2
2

1.
99

2
2

2

K
ro
ne
ck
er

2.
39
e−

2
3.
48
e−

3
2.
75
e−

2
0.
32
2

1.
19
e−

2
1.
49

2.
89
e−

3
2

3.
32
e−

4
2

1.
91

0.
14
1

V
G
A
E

1.
78

0.
98
4

2
1.
95

6.
31
e−

2
1.
07

–
–

1.
76

1.
99

–
–

G
ra
ph
ite

1.
97

0.
97
9

1.
62

1.
98

5.
36

e−
2

1.
61

–
–

8.
85
e−

2
2

–
–

SB
M
G
N
N

1.
75

0.
78
4

2
1.
99

5.
30

e−
2

1.
64

–
–

2.
10
e−

3
2

–
–

G
ra
ph
R
N
N

–
–

–
–

4.
08
e−

5
–

–
–

–
–

–
–

G
ra
ph
R
N
N
-S

0.
19
4

6.
70
e−

3
–

1.
9

1.
51
e−

5
0.
23
7

–
–

–
–

–
–

G
R
A
N

6.
57

e−
2

0.
19
1

–
1.
93

2.
51
e−

3
0.
19
2

–
–

2
2

–
–

B
iG
G

0.
18
1

5.
09

e−
2

–
0.
80
2

2.
49
e−

4
0.
42
1

–
–

2.
29
e−

4
2

–
–

A
R
V
G
A

1.
02

0.
96
8

2
2

0.
55
9

1.
47

–
–

0.
92
9

2
–

–

N
et
G
A
N

4.
45

e−
2

6.
70
e−

3
–

2.
16
e−

2
6.
00
e−

4
2.
36
e−

2
–

–
3.
28

e−
5

2
–

–

C
on
dG

E
N

2
2

–
2

2
2

–
–

2
–

–
–

SG
A
E

1.
49

e−
3

3.
31
e−

3
2.
57

e−
4

1.
36

e−
2

1.
65
e−

3
9.
69
e−

2
3.
02
e−

2
0.
37

3.
35
e−

5
0.
57
7

1.
78

0.
10
7

123

General graph generators: experiments, analyses, and improvements…

Coefficient from Table 7, and seven best results in Orbit
from Table 8. Therefore, SGAE outperforms other genera-
tors, especially when generating large datasets (e.g., Google,
Deezer, EU email, Facebook). SGAE cannot perform well
when generating certain small-sized graphs (e.g., Protein,
PPI, Cora, Citeseer). Neural network-based graph genera-
tors (e.g., GraphRNN, NetGAN, SBMGNN, etc) outperform
SGAE in such datasets, but they cannot simulate large data
distributions due to the limit of memory and FLOPS.

In terms of specific properties, Table 7 shows that BTER
generates graphs with better clustering coefficient distribu-
tion than most generators. That is because BTER generates
edges directly referring to the clustering coefficient by each
node. Although SGAE outperforms BTER, the latter is
much faster. The detailed speed comparison is introduced
in Sect. 5.6.

In general, although there are several generators (e.g.,
GraphRNN) ranking higher SGAE when generating small
graphs, these results still prove that SGAE fills the gap in
learning the generative distribution of large networks. That
is because SGAE breaks the scalability limitation of neural
network-based graph generators.

5.4 Preserving community structure

In this subsection, we compare the performance of graph
generators in terms of preserving community structures. We
report experimental results on four representative datasets
(Cora, Cora-ML, PPI, 3D Point Cloud) in Table 9. Some
graph generators (e.g., E-R, RTG, and GRAN) are excluded
because their optimization objectives cannot preserve node
order and community membership.

We find that the autoencoder-based graph generators (i.e.,
VGAE,Graphite, SBMGNN, and SGAE) are superior in pre-
serving community structures in Cora, Cora-ML, and PPI
datasets. NetGAN performs well on 3D Point Cloud. This
is because the autoencoder-based graph generators leverage

the graph neural network (GNN) to infer the node repre-
sentations, which will be decoded into a new graph. The
GNNarchitecture has a reliable reasoning capability for com-
munity memberships and better generalization performance
than NetGAN. In certain cases, users may prefer preserving
community memberships, i.e., community structures of the
observed graph. The autoencoder-based graph generator is
the best choice to generate new graphs with similar commu-
nity structures.

5.5 Parameter sensitivity

Since different types of graph generators have different
hyperparameters, we compare them in groups according to
their similarity ofmodel architecture and test their robustness
and training difficulty.

5.5.1 Sensitivity

This section evaluates the hyperparameter sensitivity of
each neural network-based model and reports their perfor-
mance by varying parameter settings. In Fig. 4, due to space
limitation, we provide detailed comparison results for two
representative evaluating metrics (Degree and Gini Index)
on Protein. According to the implementation of the model,
neural networks-based graph generators are divided into
three categories, namely RNN-based, autoencoder-based,
and GAN-based. Figure 4 shows experimental results of
graph generators in these categories.

In the left part of Fig. 4, we find that, for RNN-based
graph generators, GraphRNN-S outperforms others in terms
of sensitivity and performance. The full GraphRNN also has
a flat curve, showing robustness as good as GraphRNN-S.
GRAN and BiGG occasionally generate bad results which
show their high sensitivity on parameter settings. The mid-
dle section of Fig. 4 shows that VGAE generates graphs
with the best robustness and quality. This is because VGAE

Table 9 Evaluation results on preserving community experiment

Methods Cora Cora-ML PPI 3D Point Cloud

NMI(e−2) ARI(e−2) NMI(e−2) ARI(e−2) NMI(e−2) ARI(e−2) NMI(e−2) ARI(e−2)

SBM 11.3 ± 0.7 1.2 ± 0.1 15.7 ± 1.1 8.9 ± 0.6 9.3 ± 0.9 1.5 ± 0.3 37.0 ± 1.3 11.4 ± 0.7

DCSBM 18.6 ± 0.8 1.8 ± 0.3 22.1 ± 0.7 7.7 ± 0.4 21.7 ± 0.7 2.5 ± 0.2 37.3 ± 1.4 11.5 ± 0.8

MMSB 15.4 ± 0.6 0.8 ± 0.4 23.3 ± 0.6 13.2 ± 1.1 22.7 ± 0.7 6.3 ± 1.0 7.1 ± 0.4 1.3 ± 0.3

VGAE 60.4 ± 0.6 40.0 ± 1.2 59.0 ± 0.9 46.4 ± 1.6 49.1 ± 0.5 16.6 ± 1.8 57.0 ± 0.8 8.2 ± 1.1

Graphite 62.3 ± 0.8 43.4 ± 1.9 60.8 ± 0.7 51.0 ± 1.2 41.1 ± 0.5 -0.2 ± 0.1 58.8 ± 0.4 13.2 ± 0.3

SBMGNN 61.9 ± 0.4 41.0 ± 1.6 63.1 ± 0.7 55.0 ± 1.0 47.8 ± 0.7 13.3 ± 0.1 59.2 ± 0.9 15.9 ± 1.1

ARVGA 41.8 ± 0.8 9.3 ± 1.3 33.1 ± 0.7 14.9 ± 1.1 32.6 ± 0.9 0.1 ± 0.2 47.2 ± 0.8 4.1 ± 0.5

NetGAN 5.2 ± 0.5 0.2 ± 0.1 37.2 ± 1.4 32.7 ± 2.6 8.5 ± 0.8 4.4 ± 0.8 67.4 ± 0.9 38.8 ± 2.6

SGAE 62.0 ± 0.7 42.2 ± 1.3 62.1 ± 0.9 54.8 ± 1.5 41.6 ± 0.9 16.0 ± 1.1 60.6 ± 0.6 35.9 ± 1.4

123

S. Xiang et al.

2 4 6 8

Hyper Parameter

10-2

D
eg

re
e

BiGG
GRAN
GraphRNN-S
GraphRNN

2 4 6 8

Hyper Parameter

0.08

0.1

0.12
0.14
0.16

D
eg

re
e

VGAE
Graphite
SBMGNN
SGAE

2 4 6 8

Hyper Parameter

10-2

D
eg

re
e

ARVGA
NetGAN
CondGEN

2 4 6 8

Hyper Parameter

0

0.05

0.1

0.15

0.2

G
in

i

BiGG
GRAN
GraphRNN-S
GraphRNN

2 4 6 8

Hyper Parameter

0.3

0.4

0.5

0.6

0.7

G
in

i

VGAE
Graphite
SBMGNN
SGAE

2 4 6 8

Hyper Parameter

0.1

0.2

0.3

0.4

G
in

i

ARVGA
NetGAN
CondGEN

Fig. 4 Parameter sensitivity experiment results. Lower is better

5 10 15
Epoch

0.1

0.15

0.2

0.25

0.3

D
eg

re
e

Graphite

param-1
param-2
param-3

param-4
param-5
param-6

5 10 15
Epoch

0

0.02

0.04

0.06

0.08

D
eg

re
e

BiGG
param-1
param-2
param-3

param-4
param-5
param-6

5 10 15
Epoch

0.05

0.1

0.15

D
eg

re
e

ARVGA
param-1
param-2
param-3

param-4
param-5
param-6

5 10 15
Epoch

0.1

0.15

0.2

0.25

D
eg

re
e

SBMGNN

param-1
param-2
param-3

param-4
param-5
param-6

5 10 15
Epoch

0

0.1

0.2

0.3

0.4

D
eg

re
e

GRAN

param-1
param-2
param-3

param-4
param-5
param-6

5 10 15
Epoch

2

4

6

8

10

D
eg

re
e

10-3 NetGAN

param-1
param-2

param-3
param-4

Fig. 5 Model stability experiment results

has the simplest model architecture, resulting in better gen-
eralization. On the right side of Fig. 4, NetGAN is shown
clearly that it is not sensitive about parameter settings, and
the quality of its generated graph is the best. The parameter
changes of CondGEN and ARVGA significantly affect their
generative performance compared with NetGAN. From this
section, we can see that GraphRNN, VGAE, and NetGAN
from three groups of graph generators are not sensitive about
their parameter settings compared with the others.

5.5.2 Stability

Wereport the training stability of graph generators by varying
parameter settings inFig. 5.We show the experimental results
on Citeseer as a representative example.

We find that the curves of the model training pro-
cess of autoencoder-based graph generators (e.g., Graphite,
SBMGNN)fluctuate, but the overall trend is convergent. This
is because updating parameters may have an impact on the
degrees of all nodes. The RNN-based graph generators (e.g.,

123

General graph generators: experiments, analyses, and improvements…

GRAN, BiGG) are relatively stable, and the occasional col-
lapse does not affect its tendency to continue converging to
the optimal. The graph generation occasionally cannot con-
verge in GAN-based graph generators (e.g., ARVGA), while
only theNetGANwithWGANarchitecture has amore stable
training process.

5.6 Scalability and efficiency

We evaluate the scalability and efficiency of each generator
in this subsection. Table 10 reports the time consumption of
inferring a newgraph.Note that because generating graphs by
NetGAN requires one more step, i.e., assembling generated
randomwalks into an adjacencymatrix, generating one graph
by NetGAN is more time-consuming. Table 11 reports the
time consumption of parameter updating during the training
process. Table 12 chronicles the time consumption of the
entire training process. Table 13 details the peak memory
usage during training process.

Simple model-based graph generators have the highest
efficiency for generating large networks, incurring minor
extra space cost and taking little time. Combining the exper-
imental results on Protein and PubMed in Sect. 5.3, we can
see that the scalability of simple model-based graph gen-
erators (e.g., BTER, R-MAT) is better than others’. This is

Table 10 Time consumption (seconds) per graph generation

#Nodes 0.1k 1k 10k 100k 1000k

E-R 4.6e−4 9.0e−3 0.46 10.1 217

B-A 1.0e−3 1.2e−2 0.11 1.17 59.1

W-S 7.2e−4 7.1e−3 0.08 0.81 8.63

RTG 8.3e−3 0.13 2.62 4.13 663

BTER 1.88e−3 0.03 0.32 4.91 82.8

SBM 6.1e−3 0.09 2.58 37.1 545

DCSBM 6.2e−3 0.09 2.69 39.3 570

MMSB 6.1e−3 0.09 2.56 – –

R-MAT 8.5e−3 0.09 0.98 9.71 99.1

Kronecker 8.5e−3 0.08 1.00 9.69 99.2

GraphRNN 0.31 5.62 – – –

GraphRNN-S 0.27 4.74 63.6 – –

GRAN 0.36 4.02 – – –

BiGG 0.33 2.03 60.4 – –

VGAE 4.2e−3 0.04 0.38 – –

Graphite 6.1e−3 0.06 0.64 – –

SBMGNN 0.01 0.11 1.18 – –

ARVGA 4.8e−3 0.04 0.42 – –

NetGAN 8.7e−3 0.09 1.12 – –

CondGEN 8.3e−3 0.15 – – –

SGAE 4.5e−3 0.04 0.48 43.8 4160

Table 11 Time consumption (minutes) of parameter updating during
the training process

#Nodes 0.1k 1k 10k 100k 1000k

MMSB 5.4e−2 0.44 18.0 – –

Kronecker 9.6e−2 0.35 0.96 2.28 5.61

GraphRNN 0.59 10.4 – – –

GraphRNN-S 0.56 6.45 61.8 – –

GRAN 0.13 6.84 – – –

BiGG 0.11 2.81 33.7 – –

VGAE 0.03 0.10 1.74 – –

Graphite 0.04 0.11 2.11 – –

SBMGNN 0.09 0.31 5.22 – –

ARVGA 0.04 0.12 1.79 – –

NetGAN 0.12 0.46 7.61 – –

CondGEN 0.05 0.19 – – –

SGAE 0.04 0.11 1.76 8.63 79.8

Table 12 Time consumption (minutes) of the entire training process

#Nodes 0.1k 1k 10k 100k 1000k

MMSB 0.11 0.91 40.3 – –

Kronecker 1.39 1.55 3.25 4.73 21.3

GraphRNN 2.45 28.9 – – –

GraphRNN-S 1.63 15.4 161 – –

GRAN 1.36 14.3 – – –

BiGG 0.88 9.67 139 – –

VGAE 0.06 0.42 9.75 – –

Graphite 0.07 0.47 10.6 – –

SBMGNN 0.08 0.63 12.4 – –

ARVGA 0.07 0.50 10.3 – –

NetGAN 0.27 2.80 31.1 – –

CondGEN 0.18 25.3 – – –

SGAE 0.17 0.34 3.15 17.34 163.1

Table 13 Peak GPU memory usage (MiB) during training

#Nodes 0.1k 1k 10k 100k 1000k

MMSB 1575 1709 18529 OOM OOM

GraphRNN 1915 3121 OOM OOM OOM

GraphRNN-S 1913 1959 5501 OOM OOM

GRAN 1959 2677 OOM OOM OOM

BiGG 2043 3145 18985 OOM OOM

VGAE 1719 1759 4799 OOM OOM

Graphite 1719 1761 4819 OOM OOM

SBMGNN 1719 1767 5243 OOM OOM

ARVGA 1719 1762 4832 OOM OOM

NetGAN 2237 2552 5008 OOM OOM

CondGEN 1722 1789 – – –

SGAE 1721 1740 1943 3971 24248

123

S. Xiang et al.

because they are designed to generate a set of random graphs
having specific properties, which is insensitive to the size
of the graph. The efficiency of GraphRNN and other RNN-
based graph generators is the worst since when generating
large graphs, RNN needs to stack too many layers. There-
fore, spending a lot of space in storing long-term memory
exceeds RNN-based graph generators’ ability to articulate
the network. SGAE achieves the greatest efficiency in the
training process and memory usage, proving the value of its
decoder’s improvements on time and space complexity.

5.7 Recommendation

As shown in our comprehensive performance evaluation,
there is no algorithm which can win under all metrics. This
is because the sophisticated models are required to achieve
a good simulation quality and this inevitably sacrifices the
efficiency and scalability compared to the simple models.
Moreover, as there are many different metrics to measure the
simulation quality, it is difficult for a graph generator to win
under all these metrics because: (1) we cannot directly opti-
mize the distribution of the generated graphs according to the
observed graphs; and (2) some simple algorithms only focus
on optimizing a particular metric (e.g., degree distribution).
Thus, it is critical to have a comprehensive recommenda-
tion for users with different requirements, and the algorithms
which can achieve good trade-off among the metrics are wel-
comed in practice.

Table 14 quantitatively evaluates the performance of the
20 representative general graph generators from various
perspectives including graph simulation quality, training
time, inference time (i.e., the time used for generating a
new graph), scalability, space (i.e., memory consumption),
robustness, community preserving, and tuning difficulty for
users. According to the comprehensive experimental evalu-
ation in the subsections above, for each metric, we use the
number of � to indicate the quality of every graph genera-
tor’s performance, where����� corresponds to the best
performance (i.e., fastest, most scalable, uses least memory,
easiest to tune parameters). Note that we use the number
of parameters, stableness, and sensitivity of the models to
evaluate the user-friendliness of the parameter tuning. There-
fore, Table 14 provides a roadmap of recommendations for
researchers and practitioners in how to select general graph
generators in different settings.

Below are some recommendations for users according to
our comprehensive evaluations.

– The best graph generator tool for simulating a citation
network is our proposed SGAE. According to the last
row of Table 8, SGAE achieves three best performances
for the four citation-network datasets (Cora, Citeseer,
PubMed, Cora-ML). Furthermore, according to Tables 6

and 7 , SGAE also achieves the best performance for the
PubMed dataset. The reason is that the performance of
deepgraph-generativemodels (except SGAE)will signif-
icantly degrade when generating graphs with more than
1k nodes.

– In terms of graph simulation quality, GraphRNN can
achieve the best overall performance and can mimic the
structural distribution of observed graphs adequately. It
is a good choice if there are sufficient resources, and
the relevant costs are acceptable for users. For instance,
GraphRNN can be used for applications (e.g., protein
graphs in bioinformatics) where the sizes of observed
graphs and simulated graphs are small (e.g., less than
1000 nodes in our experiment environment). Note that
GraphRNN also demonstrates a good performance in
model robustness and parameter-tuning difficulty.

– If the efficiency and the scalability are of high priority,
DCSBM and BTER are recommended because both are
very efficient and scalable and have a good overall per-
formance on graph simulation quality among approaches
where the deep neural networks are not applied. Note that
although BTER outperforms DCSBM in terms of infer-
ence time, DCSBM can better preserve the community
structures of observed graphs.

– If users look for a good balance between graph simulation
quality and efficiency (scalability), SGAE, as proposed
in this paper, is recommended. Compared to two RNN-
based generators GRAN and BiGG, SGAE displays
competitive performance in graph simulation quality, but
outshines the others with better efficiency and scalability.
Moreover, in our experiment settings, SGAE outper-
forms other autoencoder-based generators and GAN-
based generators in both graph simulation quality and
efficiency (scalability). As reported in Table 14, SGAE
also achieves well in terms of model robustness, mem-
ory consumption, community preserving, and parameter
tuning, compared to other deep neural networks-based
approaches.

– When users are only interested in several specific proper-
ties of the observed graphs, other graph generators can be
recommended. For instance, if users are only interested
in the scale-free property of the graphs, the B-A model
can comfortably fit this role. Similarly, the W-S model
is recommended to simulate small-world graphs. When
it is important to preserve the community structures of
observed graphs, SBMGNN is a good choice.

6 Conclusion

Graph data simulation is fundamental in a wide range of
applications such as social networks, e-commerce, and bioin-
formatics. In this paper, we fill important gaps in this line

123

General graph generators: experiments, analyses, and improvements…

Ta
bl
e
14

O
ve
ra
ll
pe
rf
or
m
an
ce

ev
al
ua
tio

n
of

20
re
pr
es
en
ta
tiv

e
ge
ne
ra
lg

ra
ph

ge
ne
ra
to
rs

G
ra
ph

G
en
er
at
or

O
ut
pu

t
Q
ua
lit
y

T
ra
in
in
g

T
im

e
In
fe
re
nc
e

T
im

e
Sc
al
ab
ili
ty

Sp
ac
e

R
ob
us
tn
es
s

C
om

m
un

ity
Pr
es
er
vi
ng

T
un

in
g

D
if
fic
ul
ty

E
-R

�
–

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

–
–

�
�
�
�
�

W
-S

�
–

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

–
–

�
�
�
�

B
-A

�
–

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

–
–

�
�
�
�
�

R
T
G

�
–

�
�
�
�

�
�
�
�
�

�
�
�
�
�

–
–

�
�
�
�

B
T
E
R

�
�
�

–
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

–
–

�
�
�
�

SB
M

�
�

–
�
�
�
�

�
�
�
�
�

�
�
�
�
�

–
�
�

�
�
�
�

D
C
SB

M
�
�
�

–
�
�
�
�

�
�
�
�
�

�
�
�
�
�

–
�
�
�

�
�
�
�

R
-M

A
T

�
�

–
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

–
–

�
�
�
�

K
ro
ne
ck
er

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

–
�
�
�
�

M
M
SB

�
�

�
�
�
�

�
�
�
�

�
�
�

�
�

�
�
�

�
�

�
�
�
�

V
G
A
E

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

G
ra
ph

ite
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

SB
M
G
N
N

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

G
ra
ph
R
N
N

�
�
�
�
�

�
�

�
�

�
�
�
�

–
�
�
�
�

G
R
A
N

�
�
�
�
�

�
�

�
�

�
�
�

�
�

�
�
�

–
�
�
�

B
iG

G
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

–
�
�
�

A
R
V
G
A

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�

N
et
G
A
N

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

C
on
dG

E
N

�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

–
�
�

SG
A
E

�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

T
he

m
or
e
am

ou
nt

of
(�

),
th
e
be
tte
r
th
e
pe
rf
or
m
an
ce
.N

ot
e
th
at
th
e
sy
m
bo
l�

is
us
ed

to
re
fin

e
th
e
ra
nk
s
of

th
e
gr
ap
h
ge
ne
ra
to
rs

123

S. Xiang et al.

of research by: (i) giving an overview of 20 representative
general graph generators, including recently emerged deep
learning-based approaches; (ii) conducting comprehensive
experiments on 20 representative general graph generators
and providing broad-spectrum recommendations for both
researchers and practitioners; (iii) developing a new algo-
rithm to achieve a good trade-off between graph simulation
quality and efficiency; and (iv) implementing a user-friendly
platform for researchers and practitioners such that they not
only can easily apply a variety of existing general graph gen-
erators to their work but also immediately integrate their own
general graph generators for comprehensive performance
comparison and analytics.

Acknowledgements This work was supported by 2018YFB2100801,
NSFC62102287, 19511101300. Ying Zhang is supported by
FT170100128 and ARC DP210101393. Lu Qin is supported by
ARC FT200100787. Xuemin Lin is supported by NSFC61232006,
2018YFB1003504, ARC DP200101338 and ARC DP180103096.

References

1. Airoldi, E.M., Blei, D.M., Fienberg, S.E., et al.:Mixedmembership
stochastic blockmodels[J]. JMLR 1(9):1981–2014 (2008)

2. Akoglu, L., Faloutsos, C.: RTG: a recursive realistic graph genera-
tor using random typing[J]. Data Min. Knowl. Discov. 19(2):194–
209 (2009)

3. Albert, R., Barabási, A.-L.: Statistical mechanics of complex net-
works. Reviews of modern physics, page 47, 2002

4. Bacciu, D.,Micheli, A., Podda,M.: Graph generation by sequential
edge prediction. ESANN (2019)

5. Bacciu, D., Micheli, A., Podda, M.: Edge-based sequential graph
generation with recurrent neural networks[J]. Neurocomputing
4(16):177–189 (2020)

6. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A.,
Advokaat, N.: gmark,: Schema-driven generation of graphs and
queries. IEEE TKDE 856–869,(2017)

7. Barrett, C. L., Beckman, R. J., Khan,M., Kumar, V. S. A., Marathe,
M. V., Stretz, P. E. , Dutta, T., Lewis, B. L.: Generation and analysis
of large synthetic social contact networks. In WSC, pages 1003–
1014. IEEE, 2009

8. Batagelj, V., Brandes, U.: Efficient generation of large random net-
works. Phys. Rev. E, page 036113, 2005

9. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast
unfolding of communities in large networks. J. Stat. Mech.: Theory
and Experiment, page P10008, 2008

10. Bojchevski, A., Shchur, O., Zügner, D., Günnemann, S.: Netgan:
Generating graphs via randomwalks. In: ICML, pp. 610–619, 2018

11. Bonifati, A., Holubová, I., Prat-Pérez, A., Sakr, S.: Graph gener-
ators: State of the art and open challenges. ACM Comput Surv
53(2):1–30 (2020)

12. Brockschmidt, M., Allamanis, M., Gaunt, A.L., Polozov, O.: Gen-
erative code modeling with graphs. ICLR. OpenReview.net (2019)

13. Bu, D., Zhao, Y., Cai, L., et al.: Topological structure analysis of the
protein–protein interaction network in budding yeast[J]. Nucleic
acids research 31(9):2443–2450 (2003)

14. Cayley. On Monge’s: ”Mémoire sur la Théorie des Déblais et des
Remblais”. In: Proceedings of the London Mathematical Society,
pp. 139–143 (1882)

15. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: A recursive model
for graph mining. In: ICDM, 2004

16. Chang, C., Lin, C.: LIBSVM: A library for support vector
machines. ACM Trans. Intell. Syst. Technol. 27(1–27), 27 (2011)

17. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation
of gated recurrent neural networks on sequencemodeling. NeurIPS
(2014)

18. Dai, H., Nazi, A., Li, Y., Dai, B., Schuurmans, D.: Scalable deep
generativemodeling for sparse graphs. In ICML, pages 2302–2312,
(2020)

19. Dobson, D.P., Doig, J.A.: Distinguishing enzyme structures from
non-enzymes without alignments. J. Mol. Biol. 771–783,(2003)

20. Erdős, P., Rényi, A.: On random graphs i. publicationes mathemat-
icae (debrecen). 1959

21. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adver-
sarial nets. In Advances in neural information processing systems,
pages 2672–2680, 2014

22. Goyal, P., Ferrara, E.: Graph embedding techniques, applications,
and performance: a survey. Knowledge-Based Syst. 151, 78–94
(2018)

23. Grover, A., Zweig, A., Ermon, S.: Graphite: Iterative generative
modeling of graphs. In ICML, pages 2434–2444, 2019

24. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville,
A. C.: Improved training of wasserstein gans. In: NeurIPS, pages
5767–5777, 2017

25. Hagberg, A. A., Schult, D. A., Swart, P. J.: Exploring network
structure, dynamics, and functionusingNetworkX. In:Proceedings
of the 7th Python in Science Conference (SciPy2008), pages 11–15,
2008

26. Hochreiter, S., Schmidhuber, J.: Long short-termmemory[J]. Neu-
ral comput. 9(8):1735–1780 (1992)

27. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic block mod-
els: First steps[J]. Social networks 5(2):109–137 (1983)

28. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoen-
coder for molecular graph generation. In ICML, pages 2328–2337,
2018

29. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoen-
coder for molecular graph generation, 2019

30. Joshi, A. K., Hitzler, P., Dong, G.: Linkgen: Multipurpose linked
data generator. In ISWC, LectureNotes inComputer Science, pages
113–121, (2016)

31. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and com-
munity structure in networks[J]. Physical review E 83(1):016–107
(2011)

32. Kingma,D.P.,Welling,M.:Auto-encoding variational bayes. ICLR
(2014)

33. Kipf, T. N.,Welling,M.: Semi-supervised classification with graph
convolutional networks, 2016

34. Kipf, T.N., Welling, M.: Variational graph auto-encoders. NeurIPS
(2016)

35. Kolda, T.G., Pinar, A., Plantenga, T.D., Seshadhri, C.: A scalable
generative graph model with community structure. SIAM J. Sci,
Comput (2014)

36. Kullback, S., Leibler, R. A.: On information and sufficiency[J].
Ann. Math. Statist. 22(1):79–86 (1951)

37. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahra-
mani, Z.: Kronecker graphs: An approach to modeling networks.
JMLR 985–1042,(2010)

38. Leskovec, J., Kleinberg, J. M., Faloutsos, C.: Graphs over time:
densification laws, shrinking diameters and possible explanations.
In: SIGKDD, pages 177–187. ACM, (2005)

39. Leskovec, J., Lang, K.J., Dasgupta, A., et al.: Community structure
in large networks: Natural cluster sizes and the absence of large
well-defined clusters[J]. Internet Math. 6(1):29–123 (2009)

123

General graph generators: experiments, analyses, and improvements…

40. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R. S.: Gated graph
sequence neural networks. In Y. Bengio and Y. LeCun, editors,
ICLR, 2016

41. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.W.: Learning
deep generative models of graphs. CoRR (2018)

42. Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duvenaud,
D.K.,Urtasun,R., Zemel, R.: Efficient graph generationwith graph
recurrent attention networks. In NeurIPS, pages 4255–4265, 2019

43. Ma, T., Chen, J., Xiao, C.: Constrained generation of semantically
valid graphs via regularizing variational autoencoders. InNeurIPS,
page 7113–7124, 2018

44. Marcelli, A., Quer, S., Squillero, G.: The maximum common sub-
graph problem: A portfolio approach. CoRR (2019)

45. McCallum, A.K., Nigam, K., Rennie, J., et al.: Automating the
construction of internet portals with machine learning[J]. Inf. Retr.
3(2):127–163 (2003)

46. Mehta, N., Carin, L., Rai, P.: Stochastic blockmodels meet graph
neural networks. In ICML, pages 4466–4474, 2019

47. Moreno, S., Neville, J., Kirshner, S.: Tied kronecker product graph
models to capture variance in network populations. ACM TKDD
(2018)

48. Neumann, M., Moreno, P., Antanas, L., et al.: Graph kernels
for object category prediction in task-dependent robot grasp-
ing[C]//Online. In: Proceedings of the Eleventh Workshop on
Mining and Learning with Graphs, p6 (2013)

49. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversari-
ally regularized graph autoencoder for graph embedding. In IJCAI,
pages 2609–2615, 2018

50. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of
social representations. In SIGKDD, pages 701–710. ACM, 2014

51. Podda, M., Bacciu, D., Micheli, A.: A deep generative model for
fragment-based molecule generation[C]//International Conference
on Artificial Intelligence and Statistics. PMLR 2240–2250 (2020)

52. Rezende, D. J., Mohamed, S., Wierstra, D.: Stochastic backprop-
agation and approximate inference in deep generative models. In
ICML, JMLR Workshop and Conference Proceedings. JMLR.org,
2014

53. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to
exponential random graph (p*) models for social networks. Social
networks 29(2):173–191 (2007)

54. Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: Gemsec:
Graph embedding with self clustering. In: Proceedings of the 2019
IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining 2019, pages 65–72. ACM, 2019

55. Salha, G., Hennequin, R., Remy, J.-B., Moussallam, M., Vazir-
giannis, M.: Fastgae: Scalable graph autoencoders with stochastic
subgraph decoding. arXiv preprint arXiv:2002.01910, 2020

56. Sanfeliu, A., Fu, K.: A distance measure between attributed rela-
tional graphs for pattern recognition. IEEE Trans. Syst. Man
Cybern. 353–362 (1983)

57. Sarkar, A., Mehta, N., Rai, P.: Graph representation learning via
ladder gamma variational autoencoders[C]//Proceedings of the
AAAI Conference on Artificial Intelligence 34(04):5604–5611
(2003)

58. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-
Rad, T.: Collective classification in network data. AI Mag., pages
93–106, 2008

59. Simonovsky, M., Komodakis, N.: Graphvae: Towards generation
of small graphs using variational autoencoders. In ICANN, pages
412–422, 2018

60. Simonovsky, M., Komodakis, N.: In: In, I.C.A.N.N. (eds) Graph-
vae: Towards generation of small graphs using variational autoen-
coders, pp. 412–422. Springer (2018)

61. Stoyanovich, J., Howe, B., Jagadish, H.V.: Responsible data man-
agement. In: Proc. VLDB Endow. 3474–3488,(2020)

62. Su, S., Hajimirsadeghi, H., Mori, G.: Graph generation with vari-
ational recurrent neural network. CoRR (2019)

63. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic represen-
tations from tree-structured long short-term memory networks. In:
ACL, pp. 1556–1566. The Association for Computer Linguistics
(2015)

64. Teh, Y.W., Grür, D., Ghahramani, Z.: Stick-breaking construction
for the indian buffet process. In: Proceedings of the Eleventh Inter-
national Conference on Artificial Intelligence and Statistics, pages
556–563. PMLR, 2007

65. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P.,
Bengio, Y.: Graph attention networks. ICLR (2018)

66. Watts, D., Strogatz, S.: Collective dynamics of ”small-world” net-
works (see comments). Nature, pages pp .440–442 (1998)

67. Wu,L.,Chen,Y., Shen,K.,Guo,X.,Gao,H., Li, S., Pei, J., Long,B.:
Graph neural networks for natural language processing: A survey.
CoRR (2021)

68. Wu, Z., Pan, S., Chen, F., Long, G., Yu, P.S.: A comprehensive
survey on graph neural networks. IEEE TNNLS 1–21,(2020)

69. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A
comprehensive survey on graph neural networks. IEEE TNNLS
1–21,(2020)

70. Xia, F., Sun, K., Yu, S., Aziz, A., Wan, L., Pan, S., Liu, H.: Graph
learning: A survey. CoRR, abs/2105.00696, 2021

71. Xiao, H., Huang, M., Zhu, X.: Transg: A generative model for
knowledge graph embedding. In: ACL, The Association for Com-
puter Linguistics (2016)

72. Xie, S., Kirillov, A., Girshick, R. B., He, K.: Exploring randomly
wired neural networks for image recognition. In: ICCV, pages
1284–1293. IEEE, 2019

73. Yang, C., Zhuang, P., Shi, W., Luu, A., Li, P.: Conditional structure
generation through graph variational generative adversarial nets.
NeurIPS (2019)

74. You, J., Leskovec, J., He, K., Xie, S.: Graph structure of neural
networks. In ICML, pages 10881–10891, 2020

75. You, J., Liu, B., Ying, R., Pande, V., Leskovec, J.: In: NeurIPS,
In., page, (eds.) Graph convolutional policy network for goal-
directed molecular graph generation. Curran Associates Inc, pp.
6412–6422(2018)

76. You, J., Wu, H., Barrett, C. W., Ramanujan, R., Leskovec, J.:
G2SAT: learning to generate SAT formulas. In NeurIPS, pages
10552–10563, 2019

77. You, J., Ying, R., Ren, X., Hamilton, W., Leskovec, J.: Graphrnn:
Generating realistic graphs with deep auto-regressive models. In
ICML, pages 5694–5703, 2018

78. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey.
IEEE TKDE, (2020)

79. Zhao, L., Akoglu, L.: Pairnorm: Tackling oversmoothing in gnns.
ICLR (2020)

80. Zhou, D., Zheng, L., Han, J., He, J.: A data-driven graph generative
model for temporal interaction networks. In SIGKDD, pages 401–
411. ACM, 2020

81. Zhou, D., Zheng, L., Han, J., He, J.: A data-driven graph generative
model for temporal interaction networks. In: SIGKDD, page 401–
411, 2020

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2002.01910

	General graph generators: experiments, analyses, and improvements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Background
	2.1 Problem definition and notations
	2.2 Scope
	2.3 Classification of general graph generators
	2.4 A complimentary classification
	2.4.1 Sequential generating
	2.4.2 One-shot generating
	2.4.3 Adversarial generating
	2.4.4 Rule-based generating
	2.4.5 Block-based generating

	3 General graph generators
	3.1 Simple model-based generator
	3.2 Complex model-based generator
	3.3 Autoencoder-based generator
	3.4 GAN-based Generator
	3.5 Summary

	4 Improvement
	5 Evaluation
	5.1 Toolkit Used for Performance Evaluation.
	5.2 Experiment setup
	5.2.1 Evaluating metrics
	5.2.2 Parameter Settings

	5.3 Graph simulation quality
	5.4 Preserving community structure
	5.5 Parameter sensitivity
	5.5.1 Sensitivity
	5.5.2 Stability

	5.6 Scalability and efficiency
	5.7 Recommendation

	6 Conclusion
	Acknowledgements
	References

