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Financial time series analysis plays a central role in hedging market risks and optimizing investment de-
cisions. This is a challenging task as the problems are always accompanied by multi-modality streams
and lead-lag effects. For example, the price movements of stock are reflections of complicated market
states in different diffusion speeds, including historical price series, media news, associated events, etc.
Furthermore, the financial industry requires forecasting models to be interpretable and compliant. There-
fore, in this paper, we propose a multi-modality graph neural network (MAGNN) to learn from these
multimodal inputs for financial time series prediction. The heterogeneous graph network is constructed
by the sources as nodes and relations in our financial knowledge graph as edges. To ensure the model
interpretability, we leverage a two-phase attention mechanism for joint optimization, allowing end-users
to investigate the importance of inner-modality and inter-modality sources. Extensive experiments on
real-world datasets demonstrate the superior performance of MAGNN in financial market prediction. Our
method provides investors with a profitable as well as interpretable option and enables them to make
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informed investment decisions.
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1. Introduction

The financial market capitalization of US domestic listed com-
panies reaches 30 trillion dollars in 2019, account over 1.5 times
the Gross Domestic Product (GDP) in the United States [1]. In this
massive yet volatile market, forecasting the price movement of
equities is very important for both financial institutions and in-
vestors. According to the efficient market hypothesis (EMH) [2],
ideally, the stock’s prices reflect all available information in an ef-
ficient market, which includes historical prices, news, events, etc.
However, in a real-world situation, different equities responding to
different events are non-intuitive and non-synchronized. Thus, it is
challenging to model this intricate phenomenon, named the lead-
lag effect [3], in a time series forecasting framework.

The financial industry has researched price prediction models
since the beginning of the twentieth century [4]| and has perfected
these technologies ever since, investing millions of dollars in this
process. Traditional quantitative methods rely on historical time-
series price data for stock price movement prediction [5,6]. These
models aim to reduce the stochasticity and capture consistent pat-
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terns by extracting meaningful technical indicators [7]| and/or la-
tent features [8]. Lately, with the development of social media and
natural language processing technologies, unstructured news has
been leveraged to improve the prediction model capability [9]. But
these technologies do not capture internal relations among equi-
ties, which limits their potentials for the forecasting model. For ex-
ample, the term-level feature of an event “Qualcomm files lawsuit
against Apple” cannot differentiate the appellor “Qualcomm” and
appellee “Apple”, so it is difficult to infer the corresponding price
movements of the related equities, Qualcomm and Apple Inc.

Recently, researchers [10] tend to improve the representation of
market information by extracting structural event tuples and indi-
cators (i.e., sentiment indicator) [11] from media news. The main
idea is to learn distributed representations that similar events or
similar sentiment news could have similar features. These features
are then linked to listed companies and integrated with historical
time series for price prediction [12]. But two similar events may
be quiet unrelated, such as “Steve Jobs quits Apple” and “David
Peter leaves Starbucks”. To overcome this, studies [13,14] employ
external information from knowledge graphs (KG) in the feature
learning process [15]. Then, the above two events can have differ-
ent representations according to the semantic differences in KG,
because Steve Jobs is the founder of Apple while David Peter is
more like to be a customer in Starbucks.
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However, the stock’s price movements in the financial market
not only rely on individual events of itself but also related to
the connections of other equities [16]. These multi-modality in-
puts, including numerical time series, unstructured texts and rela-
tional graphs, contribute differently as a synergy effect on the price
movement. For instance, an event “Qualcomm suits against Apple”
will also influence other players (i.e.,, competitors, upstream and
downstream firms) of the smartphone market in different diffu-
sion speeds, such as Samsung, Foxconn, and Google, etc. Effectively
forecasting the prices of related equities from the lead-lag effects is
challenging, due to the incompleteness of financial domain knowl-
edge and intricate sequential patterns.

Therefore, in this paper, we propose a multi-modality graph
neural network model for forecasting the price movements by in-
corporating sources of lead-lag relationships, including historical
prices, media events, and corresponding knowledge from KG. In
particular, we first extract relations of linked entities from raw
news by and then store them in our financial knowledge graphs
(FinKG). Then, we propose a heterogeneous graph attention net-
work to learn the unified representation of target time series, in
which multi-modality sources are defined as source nodes and the
predicted equity as target node. We leverage a two-phase attention
mechanism (inner-modality and inter-modality attention) to in-
fer the internal sequential patterns and inter-source lead-lag rela-
tions. Inner-modality attention mechanism is designed to automat-
ically learn different contributions of graph-structured sources to
the target node within each modality inputs. While inter-modality
attention is proposed to learn weights among different modali-
ties dynamically for a decent price movement prediction of tar-
get nodes, as different modality contributes differently in differ-
ent time period. Afterwards, the learned informative features are
fed into prediction layer for price movement forecasting. Exten-
sive experiments on real market data show the effectiveness of our
method and interpretability of the proposed two-phase attention
mechanism.

In a nutshell, the main contribution of this paper includes:

» We formalize the problem of lead-lag effects in financial time
series forecasting and identify their unique challenges arising
from real financial industry applications.

We propose a novel multi-modality graph neural network
(MAGNN) to learn the lead-lag effects for financial time series
forecasting, which preserves informative market information as
inputs, including historical prices, raw news text and relations
in KG. To our best knowledge, this is the first study to explore
the lead-lag effects by embedding informative sources in a uni-
fied graph neural framework for price movements prediction.
In order to follow highly regulated processes in the financial in-
dustry, we design and implement a two-phase attention mech-
anism to infer the interpretability from both the inner-modality
and inter-modality sources. We also validate the effectiveness
of designed attention technologies in learning the internal se-
quential patterns and inter-source lead-lag relations through
empirical studies.

Extensive experimental results on 3714 stocks demonstrate the
superior performance of our proposed method. Furthermore,
Our model has been deployed in a major financial service
provider of China and we validate its performance of prof-
itability and interpretability in real-world scenarios. The source
codes will be released in near future.

2. Preliminaries

In this section, we introduce the background of lead-lag effect
and the construction process of heterogeneous graphs.
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2.1. Lead-lag effect

In an informational efficient market, price movements of stocks
can be deemed as the reaction of financial events or news [17].
However, when a new event hit the stock market, prices of some
stocks response faster than others. This phenomenon of correlated
yet asynchronous price movement is referred to as lead-lag effect
[3]. For example, in Fig. 1, when a new event (“Qualcomm suites
against Apple”) hit the market, it will not only bring price fluctua-
tion of “Qualcomm” and “Apple”, but will also influence upstream
and downstream companies, such as Samsung (supplier and major
competitor of Apple in smart phone market) and Foxconn (man-
ufacturer of Apple). But their price movements are asynchronous
because the event diffusion speed is different over different enti-
ties. Therefore, it is a challenging task to learn from this lead-lag
relationship in financial market.

2.2. Heterogeneous graph construction

In MAGNN, multi-modality heterogeneous graph extends
the conventional heterogeneous graph [18] with multi-modality
sources. Graph nodes are divided into six types (source, news,
events, market, bridge and target nodes) with three modality in-
puts (numeral time series, media texts, and relations). We give the
definition as follows:

Definition 1Heterogeneous graph. . A heterogeneous graph is de-
noted as

g = (V'Ts V37 S)v

where V7 represents the set of target nodes, Vs denotes the set of
source nodes and € is the set of links connecting between nodes.

Definition 2Source nodes. Vs are associated with different modal-
ity by a mapping function ¥ : Vs — &, where ® denotes the set of
modalities, including numeral market data, media texts, and rela-
tions.

Definition 3Target nodes. V- are our predicted equities in the
graph, which is designed to receive and aggregate messages from
other nodes via directed links.

Definition 4Bridge node. denotes the connected nodes between
multi-modality sources and target nodes. They are extracted from
the domain knowledge graph FinKG.

Definition 5Attributed nodes. include news, event and market
nodes, which only connect to their subject companies.

Multi-modality inputs are seemed as nodes in a heterogeneous
graph, in which they can pass messages to other nodes via links.
A company might be one of source, target or bridge node, while
attributed (news, event, market) nodes only connect to its subject
company. For example, the market node (M) of Apple only connect
target node Apple, as shown in Fig. 1.

Definition 6. Edges (£) are a set of links connecting between
nodes, which include directed and undirected edges. The relation-
ship among companies (source, target or bridge nodes) are di-
rected, which arrow from the subject to the object. The connection
between company and its attributed nodes are undirected.

Fig. 1 shows a running example of heterogeneous graph and
multi-modality inputs. When an event (or news) “Qualcomm suits
against Apple” hit the market, we extract the relation between
its subject (Qualcomm) and object (Apple), and establish an edge
(suit against) directed from the subject (Qualcomm) to the ob-
ject (Apple). Then, if we want to forecast Apple’s price movements
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Fig. 1. An illustration of multi-modality inputs and heterogeneous graph.

in the following day, we set it as target node and extract multi-
modality inputs accordingly, which includes event (news) seman-
tic embeddings, linked source node (Qualcomm) and its historical
prices, target node’s (Apple) market data, and the relations (includ-
ing edges and bridge nodes, such as Samsung, Motorola, Foxconn,
etc.) of source and target nodes. For example, in smart phone mar-
ket, Samsung is competitor of Apple and a downstream customer
of Google. Thus, it is a bridge node of Google and Apple in this
scenario. As shown in Fig. 1, normally, each event (news) is ac-
complished with a source node and a target node. We construct
heterogeneous graphs by multi-modality inputs of the linked nodes
and corresponding relations in FinKG. The detailed methods of re-
lation and graph construction are presented in Section 3.1. These
informative inputs are then fed into MAGNN for joint and inter-
pretable learning.

3. Methodology

In this section, we first introduce the general framework and
multi-modality inputs of our proposed approach, and then present
inner-modality graph attention and inter-modality source atten-
tion, respectively. Lastly, we introduce the target forecasting net-
work and model optimization.

3.1. Model framework and inputs

Fig. 2 shows the general framework of the proposed multi-
modality graph neural network for financial time series forecasting.
We construct the heterogeneous graph first by the events, news,
relations in KG and the market data, as shown Fig. 2a. Then, multi-
modality inputs are fed into inner-modality graph attention layer
(InnGAT) in parallel, in which each modality input is learned by
InnGAT independently over the heterogeneous graph. The inter-
modality source attention (IntSAT) takes the output of InnGAT and
learn high-order representations from all modalities. Finally, the
learned features are fed into a feed-forward and classification net-
work for target forecasting.

In the implementation, we employ a pretrained BERT' [19] as
our news embedding model, and finetune BERT model from our
large-scale financial news corpus. For event tuple extraction, we
leverage the widely-used OpenlE [20] and utilize the embedding
of structured tuples learned by tensor neural network [21] as event
feature. In the FinKG construction, we employ OpenNRE? to extract
relations from massive news text and store them in our knowledge
graph FinKG. If the entity of an event (or news) is a listed company,
we mark them as the source node. The rest entities are denoted as
bridge nodes in the knowledge graph. When a set of events hit
the FinKG, we extract the adjacent nodes and corresponding re-
lations of the mentioned entities as base graph. Then, we mark
the predicted stocks as target nodes. Afterwards, the news, events
and market data are linked to each entity and finally form the het-
erogeneous graph, as shown Fig. 2a. We update the heterogeneous
graph by every trading day.

3.2. Inner-modality graph attention

Given each modality input feature and the constructed hetero-
geneous graph, inner-modality graph attention is designed to prop-
agate and aggregate information from source nodes to the target
node. As shown in Fig. 2b, the inputs of InnGAT include the pre-

trained embeddings of the source node el.s"’ and the target node e,
where ¢ < {n, e, p} denotes the modality type and i € A5 indicates
the ith neighbors of node S. N is the set of neighbors.

We design two-phase projections for mapping the multi-
modality inputs into latent representations, named source projec-
tion and target projection. They are parameterized by weight ma-
trix Ws‘p e R%>*% and Wf’ e RAn=d, respectively. dy, dr and dj, de-
note the dimension of source node embedding, target node em-
bedding and projected hidden features. Then, a shared attention
mechanism is introduced to compute node-level attention coeffi-
cients, which is parameterized by a weight vector a;, € R2%. Fi-
nally, The inner-modality attention coefficient for source type ¢

1 https://github.com/google-research/bert
2 https://github.com/thunlp/OpenNRE
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Fig. 2. The general framework of the proposed multi-modality graph neural network. It includes multi-modality inputs, inner-modality graph attention layer, inter-modality
source attention layer and the target forecasting network. In the heterogeneous graph, the symbol of S, B, E, N, M, T denotes the source, bridge, events, news, market and

target nodes respectively.

between source node i and target node s is formulated as:

S exp(LeakyReLU(a;T[Wf cet||wg ~eis“’])) )
o = 5
* DI exp(LeakyReLU (dy " [W} - ef||W¢ - ei"’]))

where a?,,T represents transposition of dg and || is the concatena-
tion operation.

Afterward, we compute the output features of the target node
S for modality type ¢ as weighted average of the source hidden
features with sigmoid function, which is formulated as:

S s S,
Z'=a| > awle |, (2)
S,
ie./\/'sd’
where Ws‘l’ denotes the learned weights, and o is the sigmoid func-

tion. Ns indicates the neighbors set of node S. zf“’ denotes the out-
put feature of InnGAT for node S in modality ¢. In the implemen-
tation, we extend the InnGAT with multi-head attention in order
to stabilize the learning process.

3.3. Inter-modality source attention

Inter-modality source attention (IntSAT) is proposed to selec-
tively aggregate the information from multi-modality sources for
target node representation. As illustrated in Fig. 2c, the inputs

of IntSAT for target node include the output features z§¢ of In-
nGAT from all modalities, where ¢ € {n, e, p}. In the inter-modality
source attention network, a shared linear transformation param-
eterized by a weight matrix W, € R9*% and a multi-source atten-
tion mechanism parameterized by a weight vector d; € R% are em-
ployed to compute source attention coefficients, respectively. d, in-

. . . S . . .
dicates the dimension of zZ,* and d; is the dimension of the trans-
formed hidden features. Mathematically, the attention coefficient
of modality type ¢ for target node can be formulated by:

s, exp(@’ -wiz?)
T Tkeo @XP(@ Wz

(3)

. S,
where d; and W, are the learned weights, and as"’ denotes the at-
tention coefficient of modality type ¢.

Finally, we construct the representation of the target node reps
by the concatenation of the attention-weighted projected features
from all three modalities, formulated as:

Sprrs S
reps = [@S"W,zon ||aseW,zge || " W, z3" ], (4)

where the 3", o3¢ and otss” are the attention coefficient of IntSAT.
W, denotes the learned weights and reps means the output repre-
sentation of inter-modality source attention network.

3.4. Target forecasting network and optimization

Given the learned representation of target node from InnGAT
and IntSAT, we then employ a shallow neural network for the tar-
get price forecasting, as shown in Fig. 2d. In particular, we formu-
late the forecasting task as a classification problem, which means
we divide the trend of price movements into three categories
{up, neural, down}. We will detailed describe the settings in exper-
iment section. The forecasting network consists of two full connect
layers and one softmax layer. They are defined as:

Y = softmax(NNf(Wnreps —+ bn)) (5)
where NN denotes a shallow neural network with two-layers of
full connection. W, € R%*% and b, € R% are the weight matrix and
bias respectively. d; is the number of target categories. In this pa-
per, we set the d; = 3.

Finally, we define the loss function of the proposed model by
the cross-entropy of the likelihood in output layer as below:

d
L"target = - Z ZYSC lanc (6)

seVr c=1

where Ysc is the ground-truth label of ¢; movement category for
stock s, which is marked as 1 for the “up” price movements, 0 for
the “neural” and —1 for the “down” movement, respectively. V-
denotes the set of target nodes.

Our proposed multi-modality graph neural network can be
trained in an end-to-end manner by minimizing the classification
cross-entropy loss. Theoretically, we can optimize the model by the
standard stochastic gradient descent process. In practice, we em-
ploy Adam algorithm [22] as the optimizer of our model. We set
the initial learning rate to 0.001, and the batch size to 64 by de-
fault.
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4. Experiments

In this section, we conduct extensive experiments to validate
the effectiveness of our proposed technologies. We introduce the
data acquisition and experimental settings first, and then report
the result of each experiment in turn.

4.1. Datasets and experimental settings

Data acquisition Generating informative datasets from massive
multi-modality sources is challenging in our experiment. To en-
sure fairness, we collect financial events, news, market prices and
the knowledge graph for all 3714 public companies listed in China
A-shares market,> from Jan 01 2018 to Dec 31 2019. In particu-
lar, we crawl the public announcements and leverage event extrac-
tion methods to construct events for list companies. There are total
143,884 structured events across 41 categories in our dataset, such
as seasonal/annual reports, asset restructuring, increase/decrease of
credit ratings, change of the chairman or board members, produc-
tion accident, etc. For financial news, we crawl information from
87 major websites that cover most important reports in the mar-
ket. There are 5.13 million news during the time interval. We lever-
age named entity recognition (and linking) and neural relation ex-
traction technologies to extract entities and relations from raw
texts. These linked listed companies are stored as nodes in the
knowledge graph, in which each relation is stored as an edge be-
tween nodes. Finally, there are total 5.26 million entities and 6.93
million relations in the FinKG.

We gather the stock price data of China A-shares listed compa-
nies from the Shanghai and Shenzhen Stock Exchange sources from
2018 to 2020, including 500 trading days. The daily market data in-
cludes stock prices (open, close, high, and low) and the trading in-
formation (trading volume and turnover rate) of that day for each
stock. In the experiment, we remove the trading suspension stock
and untradable prices (such as limit-up, limit-down stocks) from
the dataset. In the China stock market, investors need to follow a
10% limit up-limit down mechanism strictly.

Experimental settings We forecast the price movement into three
categories {up, neural, down}. For the stock i in day t, the return
rate can be computed by R,; = pg/pﬁ‘l — 1. We set the ground-
truth label of the price movements as:

up Ry = 1yp,
f(Ry) = {neural r4oun < Ry < Tup, (7)
down Ry < Tgown

where we set ryp = 0.01 and ry,,,, = —0.01. In our dataset, there
are 226,585 samples in “up” category, 327,851 “neural” and
238,630 samples in “down” category.

In the experiment, we employ the data of the year 2018 as the
training set and evaluate the performance in the year 2019. Partic-
ularly, we construct features from multi-modality data in the re-
cent 60 trading days and apply the next day’s price movement as
the label. Then, we apply a sliding window of each trading day and
report the average result of 2019 in the experiment. In the trad-
ing strategy settings, we simply buy the forecasted “up”, sell the
“down” equities, and keep no action on “neural” stocks. The trad-
ing percentage is allocated by the linear weights of predicted prob-
ability. Please note that there are many techniques for developing
a trading strategy, which is beyond the scope of this paper. We ig-
nore the transaction costs of all compared methods for simplicity
and fairness in the experiment.

Compared methods and evaluation metrics We utilize the fol-
lowing widely used approaches as baselines to validate the effec-
tiveness of our proposed method: Stock-LSTM [13], News-ATT [9],

3 https://www.investopedia.com/terms/a/a-shares.asp
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Table 1
The comparison of forecasting performance.
Micro-F1 Macro-F1 Weighted-F1

Stock-LSTM 0.4540 0.4233 0.4489
News-ATT 0.4551 0.4551 0.4502
Stock-GAT 0.4656 0.4396 0.4654
Event-NTN 0.4720 0.4478 0.4718
MAGNN-G 0.4815 0.4607 0.4798
MAGNN-S 0.4813 0.4604 0.4793
MAGNN-all 0.4838** 0.4627+ 0.4825*

** indicates that the improvements are statistically signifi-
cant for p < 0.01 judged by paired t-test.

Stock-GAT [23], and Event-NTN [21]. All parameters are set based
on their default suggestions in the paper. For instance, Stock-LSTM
is set as two layers with a hidden size of 100 and 50. Our method
has two variations: MAGNN-G and MAGNN-S, which only employ
the inner-modality graph attention or the inter-modality source at-
tention alone. MAGNN-all denotes the full version of our proposed
techniques.

For the evaluation, we apply the Micro-F1, Macro-F1 and
Weighted-F1 score to measure the performance of forecasting ac-
curacy. For the constructed portfolio, we employ asset accumulate
return (A Return), average daily return (D Return) and widely-used
Sharpe Ratio [24] as evaluation metrics. A Return is formulated as

p; —P
|5r T > ’ (8)

ieSt-1

where S=1 denotes the set of stocks in portfolio at time t — 1. pf
is the price for stock i at time t and |-| denotes the number of
set items. Sharpe ratio (SR) is the average return earned in excess
of the risk-free rate per unit of volatility, which is expressed as:

R = (Rp — Ry)/op where R, is the return of the portfolio, Ry is the
risk-free rate, oy is the standard deviation of the portfolio’s excess
return. We use 1-year China Government Bond Yield* as the risk
free rate.

4.2. Financial forecasting

In this section, we evaluate the forecasting accuracy of financial
time series, which is the main task of this paper. Table 1 reports
the Micro-F1, Macro-F1 and Weighted-F1 score of each approach.
** denotes that the improvements are statistically significant for
p < 0.01 judged by paired t-test.

The first four lines of Table 1 shows the classification result
of compared baselines. It is clear that, Stock-LSTM and News-ATT
are not satisfactory, demonstrating neither stock nor news alone
could achieve optimal performance. Stock-GAT is slightly better
than Stock-LSTM, proving the effectiveness of preserving graph
structure in a time series forecasting model. In all baseline, Event-
NTN is most competitive, which considerably outperforms New-
ATT. The process of extracting structured events from raw news
shows useful in learning representative embeddings. Line 5 and 6
display the performance of the variations of our proposed method.
As we can see, MAGNN-S is similar to MAGNN-G. Both are bet-
ter than the most competitive baselines. The validity of integrating
multi-modality inputs in our task is strongly proved. It is essen-
tial to design an innovative model to learn from the above sources,
which is the primary motivation of this paper. MAGNN-all outper-
forms all baselines, demonstrating its superiority in learning from
multi-modality inputs for financial forecasting.

4 http://yield.chinabond.com.cn/
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Fig. 3. The accumulated returns gained in the test set (2019) by the proposed method and compared baselines. For better illustration, we divide it into four quarters view.

Table 2
The return of portfolios with different method.

Methods A Return D Return  Sharpe ratio
Stock-LSTM  0.3002 0.0012 2.7919
News-ATT 0.3960 0.0015 3.5097
Stock-GAT 0.5035 0.0018 3.4506
Event-NTN 0.5507 0.0019 3.4467
MAGNN-G 0.6521 0.0021 3.5082
MAGNN-S 0.6775 0.0021 3.5561
MAGNN-all 0.8571* 0.0027* 3.7619*

In this experiment, We would like to stress that the market
trend prediction is very challenging and a small fraction of im-
provement can already bring a large amount of revenue in the fi-
nancial industry. According to the practice from Marcos et al.,[25]
even 0.005 improvements in the prediction accuracy is very diffi-
cult for new researchers, which could normally lead to over 12%
excess profits. Our method improves the best baselines over 1% in
Table 1 and consequently leads to near 30% profit improvements in
the accumulated returns, as reported in Table 2. Therefore, we can
safely claim that our proposed methods significantly outperform
state-of-the-art baselines in the forecasting task.

4.3. Performance of the portfolio

In the constructed portfolio performance evaluation, we report
the asset return (A Return), averaged daily return (D Return) and
Sharpe Ratio first. Then, we present the accumulated return curve
across the time interval of the test period. As described above, we
buy the predicted “up” stocks and sell the “down” ones. The po-

sition is simply set linear to the probability of forecasting model
outputs.

Table 2 reports the performance of investment portfolios con-
structed by our proposed method and other baselines. We can ob-
serve that, in all evaluation metrics, our proposed technique out-
performs the baseline significantly. Particularly, Stock-LSTM and
News-ATT achieve lower performance in “A Return” and “Sharpe
Ratio”, which indicates the poor profitable returns. By incorpo-
rating the knowledge graph and structured events, the return of
Stock-GAT and Event-NTN is higher than classic baselines. The
same phenomenon is observed in the sharpe ratio metrics. The
last three rows display the result of our proposed method and its
sub-models. MAGNN constantly performs better than all compared
methods in three widely-used evaluation metrics. The effective-
ness of our proposed method on constructing profitable portfolios
is strongly proved.

To further evaluate the return of our proposed method through-
out the test time interval, we examined the accumulated return
in each trading day and report the compared results in Fig. 3. We
can observe that Stock-LSTM is very close to the market CSI 300
index® throughout the year 2019. News-ATT are fared better than
Stock-LSTM. Since the end of 2019Q1, our method leads the returns
and enlarge the gap in 2019Q2 with compared baselines, which is
noteworthy. We then conduct empirical studies with financial do-
main experts on the showcase of return curves. The reason appears
to be that when the market goes down (in 2019Q2), our method
could forecast the “down” signal in advance, which is learned from
the implicitly lead-lag effects in multi-modality sources. As a re-

5 http://www.csindex.com.cn/en/indices/index-detail/000300
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Fig. 4. The accumulated returns gained in the validation window (2020) by the proposed method and compared baselines.

sult, MAGNN performs the best performance ever since the end of
2019Q1 and leads the superiority until the end of 2019Q4, with
over 80% of investment profits.

4.4. Performance generalization

In order to observe the performance generalization of our pro-
posed method, we chose a longer duration to evaluate the port-
folio’s return compared with baselines. In particular, we train our
model by the historical data during 2019 and then predict the
price movements in 2020. The trading strategy is set as same as
previous experiment and the trading percentage is also allocated
by the linear weights of predicted probability. Fig. 4 report the
performance of accumulated returns by the proposed method and
compared baselines. As we can see, the Stock-LSTM is the lowest,
which is very close to the market return at the end of 2020. While
the News-ATT and Stock-GAT perform better that Stock-LSTM and
Market, proving the effectiveness of including news and graph re-
lations in stock price prediction task. In all baselines, Event-NTN is
most competitive. Our method achieve the best result in the ob-
servation window and steadily leading the performance since the
beginning of the second quarter of 2020. The result of model gen-
eralization experiment by training data in 2019 is consistent with
the result of training the model with 2018, which demonstrates the
effectiveness and generalization of our proposed method.

4.5. Interpretability of attention model

As described in the preliminary section, price movements of
stocks can be seemed as the reaction of financial events or news,

which is also related to its own historical performance. Thus, we
need to include multi-modality (news, event, market) sources as
the input of our model. However, different sources contribute dif-
ferently. Inter-modality attention mechanism could automatically
learn their weights in price prediction and so that achieve the
state-of-the-art performance. Moreover, within each modality, the
inner relation of different companies is also very important. For
example, an event “Microsoft buys LinkedIn” was reported on Jun
13, 2016. Immediately, the price of LinkedIn raised 46.81% and Mi-
crosoft declined 3.2% on that day. Interestingly, the prices of Sales-
force, which is the main competitor of LinkedIn, decreased over
6% in the following two weeks. Salesforce is not the direct subject
of this event but it is also deep influenced. Inner-modality atten-
tion model could learn this graph-structured relations between the
input sources and target prediction. Therefore, our method could
help to predict stock price movement more accurately and the ex-
periment results strongly demonstrate its superior performance.

Then, in order to explore the interpretability of our proposed
method, we visualize the attention weights of both inner-modality
graph attention and inter-modality source attention in Fig. 5. We
locate each equity according to the predicted return (x-axis) and
their situation in the heterogeneous graph or modality source (y-
axis) in the heat map. Then, we color it by the averaged attention
weights in the forecasting model.

Fig. 5 a displays the learned weights of InnGAT. As we can see,
equities with approximately three to six neighborhood nodes gen-
erally contribute more important in the model. Besides, there is no
noteworthy difference for node structures in different market sit-
uations (e.g., across the x-axis). The result proves that the return
of a node with about four neighbors in the heterogeneous graph is
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Fig. 6. The interface of our proposed MAGNN in web-based portfolio management system, which is deployed in a major financial service provider of China. We translate the

key information by handwritten orange and underlined words.

more likely to be influenced by adjacent nodes, which means the
lead-lag effects are more prominent in this situation.

A more interpretable output is observed in Fig. 5b. By visualiz-
ing each modality’s attention weights, we find that all sources (N,
E, and M) contribute importantly to the forecasting model, which
strongly proves the declaration of this paper. In addition, news
performs similarly in different market situations, with a slightly
prominent small positive return. The same phenomenon is ob-
served in market modality. On the contrary, events' contribution
is significantly higher in large positive and negative returns than
the small ones. The reason might be that the sharp change of eq-
uity is mostly driven by events, instead of routine news or price
data. The result demonstrates the effects of multi-modality input
and the proposed attentional model.

4.6. System implementation and deployment

We then deploy our method in real-world scenarios and eval-
uate its performance in the market tracking experiment. Fig. 6
shows the interface of the portfolio management system of our
proposed method. In the homepage navigation view (Fig. 6a), we
can investigate the forecasted “up” and “down” stocks, the con-

structed portfolio, and the leading events. The left navigator pro-
vides the effects of each modality sources, including news, events
and market prices, and the lead-lag status of stocks on selected
events. Fig. 6b reports the forecasting view on a typical equity
Spring Airlines (Code: 601021) Ltd., which is China’s first and North
Asia’s largest low fare airline. The upper part shows the ground-
truth stock’s price, and the lower part displays the predicted price
movements ratio since Jan 01, 2020.

As we can see, our method successfully forecasted four signif-
icant fluctuations in advance of Spring Airlines. At last, we report
the portfolio’s performance details in Fig. 6¢. The result shows that
our method significantly improves the returns with over 60% of ex-
cess profit. In addition, by learning the lead-lag effects from multi-
modality sources, our method could avoid large losses in the mar-
ket, which decreases the maximum drawdown from —16.08% to
—12.48%.

In the implementation, we employ distributed Scrapy as the
web crawler, Redis as the in-memory database. The proposed
model is written in Tensorflow on Python and requires two hours
for training on two pieces of Telsa P100 GPU. The integrated port-
folio management system is implemented by Spring Cloud micro-
services and written in Java.
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5. Related works

In this section, we introduce some works that are related to
our research, including financial time series analysis and multi-
modality graph neural network.

Financial time series analysis In recent decades, numerous works
have proposed to forecast the financial time series [26]. Conven-
tional approaches includes autoregressive model, moving average
method, factor analysis [16], indicator optimization [27], etc. Af-
terwards, the machine learning techniques have been employed
for stock price prediction, such as support vector machine [28],
boosting trees [29], and neural network, especially for the RNN
and LSTM [30]. Recently, some researchers demonstrated the effec-
tiveness of leveraging unstructured text news and events to learn
representative embeddings for stock price prediction [31,32]. Ad-
vanced transfer learning [33] and unsupervised learning [34] tech-
niques are also introduced to learn the meaningful embeddings
for time series analysis. However, existing approaches fail to learn
the internal relations of stock movements on the lead-lag effects
of events (or news). The majority of them only employ a single
modality source for forecasting, which may dismiss much useful
information.

Multi-modality and graph attention network Graph neural net-
work (GNN) has shown its superior performance for representing
graph-structured data [35,36]. The graph attention model improves
the node representation by adjusting meaningful weights in the
aggregation process with adjacent nodes [37], indicating the im-
portance of corresponding nodes [38] and the attributed relations
[39]. GNN with attention mechanism has shown its effectiveness in
a wide range of fields, including finance [40], healthcare [41], com-
puter vision [42], e-commerce [43,44] etc. Recently, some works
explore to apply GNN to learning from multi-modality inputs, such
as disease diagnosis by multi-modality images [45]. However, there
are few studies on financial forecasting by multi-modality graph
neural network.

6. Conclusion

In this paper, we propose a novel multi-modality graph neu-
ral network for financial time series forecasting. Our method ad-
dresses the key problem of price prediction in the financial in-
dustry, interpretable learning the lead-lag effects with informa-
tive source, by inner-modality graph attention and inter-modality
source attention mechanism. We thoroughly evaluate the proposed
method’s effectiveness by comparing it with the state-of-the-art
baselines on the massive historical datasets. In addition, we de-
ploy the model in real-world applications, and the result proves
that our work could avoid significant financial investment losses.

In conclusion, this is the first work to study the financial time
series forecasting problem by advanced GNN techniques with in-
formative sources, which may innovate more studies on both the
computer science and finance communities. On the one hand, we
extend the graph attention model to multi-modality scenarios; on
the other hand, we improve financial forecasting with learning on
alternative data.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The work is supported by the National Key R&D Program of
China (2018YFB2100801), the National Science Foundation of China

Pattern Recognition 121 (2022) 108218

(6210070838), the Shanghai “Scientific and Technological Innova-
tion Action Plan” High and New Technology Projects (19511101300).

References

[1] Worldbank, Market capitalization of listed domestic companies, 2020, Ac-

cessed 16-March-2021, https://data.worldbank.org/indicator/CM.MKT.LCAP.CD.

[2] E.F. Fama, The behavior of stock-market prices, J. Bus. 38.1 (1965) 34-105 APA.

[3] M.L. O’Connor, The cross-sectional relationship between trading costs and

lead/lag effects in stock & option markets, Financ. Rev. 34 (4) (1999) 95-117.
[4] A. Cowles 3rd, Can stock market forecasters forecast? Econometrica 1 (3)
(1933) 309-324.

[5] SJ. Taylor, Modelling Financial Time Series[M], World Scientific, 2008.

[6] C.Q. Cao, RS. Tsay, Nonlinear time-series analysis of stock volatilities[]], ]. Appl.
Econom. 7 (S1) (1992) $165-5185.

[7] R.D. Edwards, ]. Magee, W.H. Bassetti, Technical Analysis of Stock Trends, 2012.

[8] D. Cheng, Y. Tu, Z. Niu, L. Zhang, Learning temporal relationships between fi-

nancial signals, in: 2018 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), IEEE, 2018, pp. 2641-2645.

Z. Hu, W. Liu, J. Bian, X. Liu, T.-Y. Liu, Listening to chaotic whispers: a deep

learning framework for news-oriented stock trend prediction, in: Proceedings

of the Eleventh ACM International Conference on Web Search and Data Mining,

WSDM '18, Association for Computing Machinery, New York, NY, USA, 2018,

pp. 261-269.

[10] D. Tashiro, H. Matsushima, K. Izumi, H. Sakaji, Encoding of high-frequency or-
der information and prediction of short-term stock price by deep learning,
Quant. Finance 19 (9) (2019) 1499-1506.

[11] S. Bharathi, A. Geetha, Sentiment analysis for effective stock market prediction,
Int. J. Intell. Eng. Syst. 10 (3) (2017) 146-154.

[12] Y. Xu, S.B. Cohen, Stock movement prediction from tweets and historical prices,
in: Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 2018, pp. 1970-1979.

[13] T. Fischer, C. Krauss, Deep learning with long short-term memory networks for
financial market predictions, Eur. ]. Oper. Res. 270 (2) (2018) 654-669.

[14] S. Deng, N. Zhang, W. Zhang, ]. Chen, J.Z. Pan, H. Chen, Knowledge-driven
stock trend prediction and explanation via temporal convolutional network,
in: Companion Proceedings of The 2019 World Wide Web Conference, 2019,
pp. 678-685.

[15] D. Cheng, F. Yang, X. Wang, Y. Zhang, L. Zhang, Knowledge graph-based event
embedding framework for financial quantitative investments, in: Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2020, pp. 2221-2230.

[16] G. Ganeshapillai, J. Guttag, A. Lo, Learning connections in financial time series,
in: International Conference on Machine Learning, 2013, pp. 109-117.

[17] W.S. Chan, Stock price reaction to news and no-news: drift and reversal after
headlines, ]. Financ. Econ. 70 (2) (2003) 223-260.

[18] R. Hussein, D. Yang, P. Cudré-Mauroux, Are meta-paths necessary? Revisit-
ing heterogeneous graph embeddings, in: Proceedings of the 27th ACM In-
ternational Conference on Information and Knowledge Management, 2018,
pp. 437-446.

[19] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: pre-training of deep bidirec-
tional transformers for language understanding, 2018arXiv:1810.04805

[20] S. Saha, et al., Open information extraction from conjunctive sentences, in:
Proceedings of the 27th International Conference on Computational Linguis-
tics, 2018, pp. 2288-2299.

[21] X. Ding, K. Liao, T. Liu, Z. Li, J. Duan, Event representation learning enhanced
with external commonsense knowledge, in: Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
2019, pp. 4896-4905.

[22] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization,
arXiv preprint arXiv:1412.6980(2014).

[23] P. Velickovic, A. Casanova, P. Lio, G. Cucurull, A. Romero, Y. Bengio, Graph at-
tention networks, in: 6th International Conference on Learning Representa-
tions, ICLR 2018 - Conference Track Proceedings, 2018.

[24] O. Ledoit, M. Wolf, Robust performance hypothesis testing with the sharpe ra-
tio, J. Empir. Finance 15 (5) (2008) 850-859.

[25] M.L. De Prado, Advances in Financial Machine Learning, John Wiley & Sons,
2018.

[26] T.G. Andersen, R.A. Davis, ].-P. Kreif3, T.V. Mikosch, Handbook of Financial Time
Series, Springer Science & Business Media, 2009.

[27] Z. Li, D. Yang, L. Zhao, ]. Bian, T. Qin, T.-Y. Liu, Individualized indicator for all:
stock-wise technical indicator optimization with stock embedding, in: Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, 2019, pp. 894-902.

[28] L.-. Cao, EE.H. Tay, Support vector machine with adaptive parameters in finan-
cial time series forecasting, IEEE Trans. Neural Netw. 14 (6) (2003) 1506-1518.

[29] A. Agapitos, A. Brabazon, M. O’'Neill, Regularised gradient boosting for financial
time-series modelling, Comput. Manag. Sci. 14 (3) (2017) 367-391.

[30] A. Sagheer, M. Kotb, Unsupervised pre-training of a deep LSTM-based stacked
autoencoder for multivariate time series forecasting problems, Sci. Rep. 9 (1)
(2019) 1-16.

[31] D. Zhou, L. Zheng, Y. Zhu, J. Li, ]. He, Domain adaptive multi-modality neural
attention network for financial forecasting, in: Proceedings of The Web Con-
ference 2020, 2020, pp. 2230-2240.

[9



D. Cheng, F. Yang, S. Xiang et al.

[32] O.B. Sezer, M.U. Gudelek, A.M. Ozbayoglu, Financial time series forecasting
with deep learning: a systematic literature review: 2005-2019, Appl. Soft
Comput. 90 (2020) 106181.

[33] R. Ye, Q. Dai, Implementing transfer learning across different datasets for time
series forecasting, Pattern Recognit. 109 (2021) 107617.

[34] H. Wang, Q. Zhang, J. Wu, S. Pan, Y. Chen, Time series feature learning with
labeled and unlabeled data, Pattern Recognit. 89 (2019) 55-66.

[35] N. Dehmamy, A.-L. Barabasi, R. Yu, Understanding the representation power
of graph neural networks in learning graph topology, in: Advances in Neural
Information Processing Systems, 2019, pp. 15413-15423.

[36] F. Manessi, A. Rozza, M. Manzo, Dynamic graph convolutional networks, Pat-
tern Recognit. 97 (2020) 107000.

[37] B. Knyazev, G.W. Taylor, M. Amer, Understanding attention and generalization
in graph neural networks, in: Advances in Neural Information Processing Sys-
tems, 2019, pp. 4202-4212.

[38] N. Park, A. Kan, X.L. Dong, T. Zhao, C. Faloutsos, Estimating node importance
in knowledge graphs using graph neural networks, in: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, 2019, pp. 596-606.

[39] S. Feng, C. Xu, Y. Zuo, G. Chen, F. Lin, J. XiaHou, Relation-aware dynamic at-
tributed graph attention network for stocks recommendation[]], Pattern Recog-
nit. (2021) 108-119, doi:10.1016/j.patcog.2021.108119.

[40] D. Cheng, Z. Niu, Y. Zhang, Contagious chain risk rating for networked-guaran-
tee loans, in: Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2020, pp. 2715-2723.

[41] E. Choi, M.T. Bahadori, L. Song, W.F. Stewart, ]. Sun, Gram: graph-based atten-
tion model for healthcare representation learning, in: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, 2017, pp. 787-795.

[42] J. Wu, S.-h. Zhong, Y. Liu, Dynamic graph convolutional network for multi-
-video summarization, Pattern Recognit. 107 (2020) 107382.

[43] D. Cheng, S. Xiang, C. Shang, Y. Zhang, F. Yang, L. Zhang, Spatio-temporal at-
tention-based neural network for credit card fraud detection, in: Proceedings
of the AAAI Conference on Artificial Intelligence, 34, 2020, pp. 362-369.

10

Pattern Recognition 121 (2022) 108218

[44] D. Cheng, X. Wang, Y. Zhang, et al., Graph neural network for fraud detection
via spatial-temporal attention[J], IEEE Trans. Knowl. Data Eng. (2020) https:
|/ieeexplore.ieee.org/abstract/document/9204584/.

[45] X. Fang, Z. Liu, M. Xu, Ensemble of deep convolutional neural networks based
multi-modality images for Alzheimer’s disease diagnosis, IET Image Proc. 14
(2) (2019) 318-326.

Dawei Cheng is an assistant professor with the department of computer science
and technology, Tongji University, Shanghai, China. Before that, Dawei was a post-
doctoral associate at MoE key lab of artificial intelligence, department of computer
science and engineering, Shanghai Jiao Tong University. He received the Ph.D. De-
gree in computer science from Shanghai Jiao Tong University, Shanghai, China, in
2018. His research interests include graph learning, data mining and machine learn-
ing.

Fangzhou Yang is a senior research scientist with the laboratory of artificial intelli-
gence (Seek-Data team), Emoney Inc., Shanghai, China. Fangzhou received his mas-
ter degree from Technical University of Berlin and Shanghai Jiao Tong University.
Before that, he received his B.Sc. degree in computer science from Shanghai Jiao
Tong University. His research interests include pattern recognition and data mining
in finance, portfolio management and quantitative investment.

Sheng Xiang is a Ph.D. candidate in the Center for Artificial Intelligence, major in
Computer Science, University of Technology Sydney, Australia. He received his B.Sc.
degrees in Bioinformatics Engineering from Shanghai Jiao Tong University. His re-
search interests include big graph processing and analysis, query processing on data
stream, uncertain data and graphs.

Jin Liu is a senior research scientist with the laboratory of artificial intelligence
(Seek-Data team), Emoney Inc., Shanghai, China. He received his BSc and Master
degree in computer science and engineering from Wuhan University, Hubei, China.
His research interests include financial data mining, factor analysis and machine
learning.



