
EFFICIENT TOP-K VULNERABLE NODES DETECTION IN
UNCERTAIN GRAPHS

Dawei Cheng Chen Chen Xiaoyang Wang Sheng Xiang

ABSTRACT

Uncertain graphs have been widely used to model complex linked data in many real-world applications,
such as guaranteed-loan networks and power grids, where a node or edge may be associated with
a probability. In these networks, a node usually has a certain chance of default or breakdown due
to self-factors or the influence from upstream nodes. For regulatory authorities and companies, it is
critical to efficiently identify the vulnerable nodes, i.e., nodes with high default risks, such that they
could pay more attention to these nodes for the purpose of risk management. In this paper, we propose
and investigate the problem of top-k vulnerable nodes detection in uncertain graphs. We formally
define the problem and prove its hardness. To identify the k most vulnerable nodes, a sampling-based
approach is proposed. Rigorous theoretical analysis is conducted to bound the quality of returned
results. Novel optimization techniques and a bottom-k sketch based approach are further developed
in order to scale for large networks. In the experiments, we demonstrate the performance of proposed
techniques on 3 real financial networks and 5 benchmark networks. The evaluation results show
that the proposed methods can achieve up to 2 orders of magnitudes speedup compared with the
baseline approach. Moreover, to further verify the advantages of our model in real-life scenarios, we
integrate the proposed techniques with our current loan risk control system, which is deployed in
the collaborated bank, for more evaluation. Particularly, we show that our proposed new model has
superior performance on real-life guaranteed-loan network data, which can better predict the default
risks of enterprises compared to the state-of-the-art techniques.

Keywords Uncertain graph · guaranteed-loan network · top-k · vulnerable node detection

1 Introduction

Uncertainty is inherent in real-world data because of various reasons, such as the accuracy issue of devices and
models [1, 2]. Sometimes, people may inject uncertainty to the data on purpose to protect user privacy [3]. As a
common data structure, graphs are widely used to model the complex relationships between different entities. Due to
the ubiquitous uncertainty, uncertain graph analysis has attracted significant attentions in the community of database
management. A large number of graph problems have been studied in the context of uncertain graphs, e.g., nearest
neighbor search [4], reliability query [5], cohesive subgraph mining [1], etc.

In some real-life graphs, such as power grids and guaranteed-loan networks, nodes (e.g., facilities and enterprises)
may breakdown or default due to self-factors or the issues from upstream nodes. To identify these high-risky (i.e.,
vulnerable) nodes, in this paper, we investigate a novel problem, named top-k vulnerable nodes detection. Given a
directed uncertain graph G, each node A (resp. edge (A,B)) is associated with a probability ps(A) (resp. p(B|A)).
ps(A) denotes the probability that A defaults due to itself factors, and p(B|A) denotes the probability that B defaults
because of the default of A. By considering both factors, we can calculate the node default probability. We say a node
is more vulnerable if it has higher default probability. The problem is different from the existing research, such as
reliability problem and influence maximization problem [5, 6], which more focus on investigating the reachability for a
set of nodes or finding a group of nodes to maximize the influence over the network. Our problem is of great importance
to many real-world applications. Following is a motivating example on financial data analysis.

Motivating application. Network-guaranteed loan (also known as guarantee circle) is a widespread economic phe-
nomenon, and attracting increasing attention from the banks, financial regulatory authorities, governments, etc. In order

ar
X

iv
:1

91
2.

12
38

3v
5

 [
cs

.C
E

]
 2

9
Ju

n
20

21

Guarantor

Guarantor

Borrower Bank

Guarantee
Contracts

Loan Contracts

Receive Fund

Regular Repayments

...

Figure 1: Guarantee loan process

Figure 2: A real-world guaranteed-loan network

to obtain loans from banks, groups of small and medium enterprises (SMEs) back each other to enhance their financial
security. Figure 1 shows the flow of guarantee loan procedure. When more and more enterprises are involved, they form
complex directed-network structures [7]. Figure 2 illustrates a guaranteed-loan network with around 3, 000 enterprises
and 7, 000 guarantee relations, where a node represents a small or medium enterprise and a directed edge from node
A to node B indicates that enterprise B guarantees another enterprise A. Thousands of guaranteed-loan networks of
different complexities have coexisted for a long period [8]. It requires an efficient strategy to prevent, identify and
dismantle systematic crises.

Many kinds of risk factors have emerged throughout the guaranteed-loan network, which may accelerate the transmission
and amplification of risk. The guarantee network may be alienated from the “mutual aid group” as a “breach of contract”.
An appropriate guarantee union may reduce the default risk, but significant contagion damage throughout the networked
enterprises could still occur in practice [9]. The guaranteed loan is a debt obligation promise. If one corporation gets
trapped in risks, it will spread the contagion to other corporations in the network. When defaults diffuse across the
network, a systemic financial crisis may occur. It is essential to consider the contagion damage in the guaranteed-loan
networks. We can model a guaranteed-loan network with our uncertain graph model, where each node has a self-risk
probability and each edge has a risk diffusion probability. Figure 3(a) is toy example of guaranteed-loan network, where
Figure 3(e) shows the corresponding relationships between different enterprises and the risk diffusion probabilities. It is
desirable to efficiently identify the k most vulnerable nodes, i.e., enterprises with high default risks, such that the banks
or the financial regulatory authorities can pay extra attention to them for the purpose of risk management. It is more
urgent than ever before with the slowdown of the economics worldwide nowadays.

In the literature, some machine-learning based approaches (e.g., [10]) have been proposed to predict the node default
risk for different applications. For instance, a high-order and graph attention based network representation method has
been designed in [10] to infer the possibility of loan default events. These approaches indeed consider the structure of

2

A

B

D

C

E

Borrower Guarantor
Diffusion

Probability

A B

A C

B D

B E

C E

D E

(a)

E D E

AB

D E
(e)

(b) (c)

(d)

𝑝(𝐵|𝐴)

𝑝(𝐶|𝐴)

𝑝(D|𝐵)

𝑝(𝐸|𝐵)

𝑝(𝐸|𝐶)

𝑝(𝐸|𝐷)

Figure 3: Example of uncertain guaranteed-loan network

networks. However, they cannot properly capture the uncertain nature of contagious behaviors in the networks. In the
experiment, we also compare with these approaches to demonstrate the advantages of our model.

Our approach. In this paper, to identify the top-k vulnerable nodes, we model the problem with an uncertain graph,
and infer the default probability of a node following the possible world semantics, which has been widely used to
capture the contagious phenomenon in real networks [11, 12, 13, 14]. In particular, we utilize an uncertain graph with
two types of probabilities to model the occurrence and prorogation of the default risks in the network. Note that, we
focus on identifying vulnerable nodes for a given network, while the self-risk probabilities and diffusion probabilities
can be obtained based on the existing works (e.g., [15, 10]).

Specifically, Figures 3(a) and 3(e) illustrate the structure of a toy uncertain graph with 5 nodes and 6 edges, as well as
the associated self-risk probabilities and diffusion probabilities. Given the probabilistic graph G, we may derive the
default probability of a node following the possible world semantics, where each possible world (i.e., instance graph
in this paper) corresponds to a subgraph (i.e., possible occurrence) of G. Figures 3(b)-(d) are three example possible
worlds of Figure 3(a). In each possible world, a node exits if it defaults, and an edge (A,B) appears if the default of A
indeed leads to the default of B. Taking node E as an example, it may default because of (i) itself, which is represented
by a shaded node as shown in Figure 3(b), or because of (ii) the contagion damage initiated by other nodes as shown in
Figures 3(c)-(d). In Section 2, we will formally introduce how to derive the default probabilities of nodes.

In this paper, we show that the problem of calculating the default probability of a node alone is #P-hard, not mentioning
the top-k vulnerable nodes identification problem. A straightforward solution for the top-k vulnerable nodes computation
is to enumerate all possible worlds and then aggregate the results in each possible world. However, it is computational
prohibitive, since the number of possible worlds of an uncertain graph may be up to 2n+m, where n and m are the
number of nodes and edges in the graph, respectively. In this paper, we first show that we can identify the top-k
vulnerable nodes by using a limited number of sampled instance graphs with tight theoretical guarantee. To reduce
the sample size required and speedup the computation, lower/upper bounds based pruning strategies and advanced
sampling method are developed. In addition, to further accelerate the computation, a bottom-k sketch based method is
proposed. To verify the performance in real scenarios, we integrate the proposed techniques with our current loan risk
control system, which is deployed in the collaborated bank.

Contributions. The principle contributions of this paper are summarized as follows.

• We advocate the problem of top-k vulnerable nodes detection in uncertain graphs, which is essential in
real-world applications.

• Due to the hardness of the problem, a sampling based method is developed with tight theoretical guarantee.

• We develop effective lower and upper bound techniques to prune the searching space and reduce the sample
size required. Advanced sampling method is designed to speed up the computation with rigorous theoretical
analysis.

• A bottom-k sketch based approach is further proposed, which can greatly speedup the computation with
competitive results.

• We conduct extensive experiments to evaluate the efficiency and effectiveness of our proposed algorithms on 3
real financial networks and 5 benchmark networks.

3

Table 1: Summary of notations

Notation Definition
G = (V, E) uncertain graph
V/E node/edge set of G
ps(v) the self-risk probability of v
p(vi|vj) the diffusion probability
p(v) the default probability of v
h(x) a truly random hash function
L(A, k) the k-th smallest hash value of the set A
bk the parameter k in the bottom-k sketch
N(v) the set of in-neighbors of node v
A an approximation algorithm for the problem
R the set of k nodes returned by A
P k the default probability of rank k-th nodes
(ε, δ) the parameters in (ε, δ)-approximation
t the sample size

pl(v), pu(v) the lower and upper bound of p(v)
Tl, Tu the k-th largest value of pl(v) and pu(v)
B the set of candidates
Gt graph by reversing the direction of edges in G

• To further verify the advantages of our models in real scenarios, the proposed techniques are integrated into
our current loan risk control system, which is deployed in the collaborated bank. Through the case study on
real-life financial environment, it verifies that our proposed model can significantly improve the accuracy for
high-risky enterprises prediction.

Roadmap. The rest of the paper is organized as follows. Section 2 describes the problem studied and the related
techniques used in the paper. Section 3 shows the basic sampling-based method and our optimized algorithms. We
report the experiment results in Section 4. Section 5 introduces the system implementation details and case study. We
present the related work in Section 6 and conclude the paper in Section 7.

2 Preliminaries

In this section, we first we present some key concepts and formally define the problem. Then, we introduce the related
techniques used. Table 1 summarizes the notations frequently used throughout this paper.

2.1 Problem Definition

We consider an uncertain graph G = (V, E) as a directed graph, where V is the set of nodes and E denotes the set of
edges. n = |V| (resp. m = |E|) is the number of nodes (resp. edges) in G. Each node v ∈ V is associated with a
self-risk probability ps(v), which denotes the default probability of v caused by self-factors. Each edge (u, v) ∈ E is
associated with a diffusion probability p(v|u), which denotes the probability of v’s default caused by u’s default. In
this paper, we assume the self-risk probabilities and diffusion probabilities are already available. These probabilities
can be derived based the previous studies (e.g., [10]).

For simplicity, when there is no ambiguity, we use uncertain graph, graph and network interchangeably. In this paper,
we derive the default probability of a node by considering both self-risk probability and diffusion probability, which is
defined as follows.

Definition 1 (Default Probability). Given an uncertain graph G = (V, E), for each node v ∈ V , its default probability,
denoted by p(v), is obtained by considering both self-risks probability and diffusion probability. p(v) can be computed
recursively as follows.

p(v) = 1− (1− ps(v))

 ∏
all x∈N(v)

(1− p(v|x)p(x))

 (1)

where N(v) is the set of in-neighbors of v.

4

It is easy to verify that the equation above is equal to aggregate the probability over all the possible worlds, i.e.,

p(v) =
∑
W∈W

p(W)× IW (v)

whereW is the set of all possible worlds, p(W) is the probability of a possible world W , and IW (v) is an indicator
function denoting if v defaults in W or not.
Example 1. Reconsider the graph in Figure 3. Suppose the self-risk probabilities and diffusion probabilities are all 0.2
for each node and edge. Then, we have p(A) = 0.2 and p(B) = 1− (1− ps(B))(1− 0.2× p(A)) = 0.232.

Problem statement. Given an uncertain graph G = (V, E), we aim to develop efficient algorithms to identify the setR
of top-k vulnerable nodes, i.e., the k nodes with the highest default probability.
Theorem 1. It is #P-hard to compute the default probability.

Proof. We show the hardness of the problem by considering a simple case, where the self-risk probability ps(v) equals
1 for node v, and ps(u) equals 0 for u ∈ V \ v. Therefore, for the node u ∈ V \ v, the default probability p(u) is
only caused by the default of node v. Then, the default probability of p(u) equals the reliability from v to u, which is
#P-hard to compute [16]. Thus, it is #P-hard to compute the default probability. The theorem is correct.

2.2 Bottom-k Sketch

In this section, we briefly introduce the bottom-k sketch [17], which is used in our BSRBKframework to obtain the
statistics information for early stopping condition. Bottom-k sketch is designed for estimating the number of distinct
values in a multiset. Given a multiset A = {v1, v2, · · · , vn} and a truly random hash function h, each distinct value vi
in the set A is hashed to (0, 1) and h(vi) 6= h(vj) for i 6= j. The bottom-k sketch consists of the k smallest hash values,
i.e., L(A) = {h(vi)|h(vi) ≤ L(A, k) ∧ vi ∈ A}, where L(A, k) is the k-th smallest hash value. So the number of
distinct value can be estimated with k−1

L(A,k) . The estimation can converge fast with the increase of k, where the expected

relative error is
√
2/π(k − 2) and the coefficient variation is no more than 1/

√
k − 2. To distinguish from the k in the

top-k problem, hereafter in this paper, we use bk to denote the parameter k in the bottom-k sketch.

3 Solutions

In this section, we first present a basic sampling method and analyze the sample size required. Then, we introduce the
optimized approaches to accelerate the processing.

3.1 Basic Sampling Approach

Due to the hardness of computing the default probability, in this section, we propose a sampling based method. In order
to bound the worst case performance, rigorous theoretical analysis is conducted about the required sample size.

Sampling framework. To compute the default probability, we can enumerate all the possible worlds and aggregate the
results. However, the possible world space is usually very large. In previous research, sampling based methods are
widely adopted for this case. That is, we randomly select a set of possible worlds and take the average value as the
estimated default probability. By carefully choosing the sample size, we can return a result with performance guarantee.

Algorithm 1 shows the details of the basic sampling based method. The input is a given graph, where each node/edge
is associated with a self-risk/diffusion probability. In each iteration, we generate a random number for each node to
determine if it defaults by itself or not (Lines 4-7). Then, we conduct a breath first search from these nodes, i.e., hv = 1,
to locate the nodes that will be influenced by them in the current simulation. For each encountered edge, we generate
a random number to decide if the propagation will continue or not. For each node, the number of default times is
accumulated in Lines 21. The final default probability is calculated by taking an average over the accumulated value vc.
Finally, the algorithm returns k results with the largest estimated value.
Example 2. Reconsider the example in Figure 3. Suppose Figures 3(b)-3(d) are the three sampled graphs, and nodes
E,D,A are the ones default by itself. Assuming k = 2, then, nodes E and D are returned results with the largest
estimated default probabilities.

Sample size analysis. For sampling based methods, a critical problem is to determine the sample size required in order
to bound the quality of returned result. In this section, we conduct rigorous theoretical analysis about the sample size
required. Specifically, we say an algorithm A is (ε, δ)-approximation if the following conditions hold.

5

Algorithm 1: Basic Sampling Approach
Input : G : a given graph, k: a positive integer, t: sample size
Output :R: collection of top-k vulnerable nodes
uv := 0 for all nodes v ∈ V ;1
for i in 1 to t do2

hv := 0 for all nodes v ∈ V;3
for each v ∈ V do4

generate a random number rv in [0, 1];5
if rv 6 ps(v) then6

hv := 1;7

Q ← {v|hv = 1} ;8
mark V \ Q as unvisited ;9
whileQ 6= ∅ do10

vq ← Q.pop() ;11
for each va ∈ N(vq) do12

if va is unvisited then13
generate a random number re in [0, 1] ;14
if re > p(va|vq) then15

continue ;16

hva := 1 ;17
mark va as visited ;18
push va toQ ;19

for each v ∈ V do20
vc := vc + hv ;21

R ← the top-k nodes ordered by pv = vc/t ;22
return R23

Definition 2 ((ε, δ)-approximation). Given an approximation algorithm A for the top-k problem studied, letR be the
set of k nodes returned byA. P k is the default probability of the k-th node in the ground truth order. Given ε, δ ∈ (0, 1),
we say A is (ε, δ)-approximation ifR fulfills the following conditions with at least 1− δ probability.

1) For v ∈ R, p(v) ≥ P k − ε;

2) For v /∈ R, p(v) < P k + ε.

If A is a (ε, δ)-approximation algorithm for the vulnerable node detection problem, it means that with high probability
(i) the default probabilities of returned nodes are at least P kv − ε; (ii) for the nodes not inR, the default probabilities
are at most P k + ε.

Theorem 2 (Hoeffding Inequality). Given a sample size t and ε > 0, let pv be the unbiased estimation of p(v), where
pv =

1
t

∑t
i=1 p

i
v and piv ∈ [ai, bi]. Then we have

Pr[pv − p(v) ≥ ε] ≤ exp(− 2t2ε2∑t
i=1(a

i − bi)2
) (2)

Based on the Hoeffding inequality, we have following theorem hold.

Theorem 3. Given the sample size t, ε > 0 and two nodes u, v ∈ V , if p(v)− p(u) ≥ ε, then

Pr[pu − pv > 0] ≤ exp(−tε2/2)

6

Proof. We have

Pr[pu − pv > 0]

≤ Pr[pu − pv ≥ p(u)− p(v)− ε]
= Pr[pu − pv − (p(u)− p(v)) ≥ ε]

≤ exp(− 2t2ε2∑t
i=1 2

2
)

= exp(−tε2/2)

The last two steps consider pu − pv as the estimator of p(u)− p(v). In addition, piu − piv ∈ [−1, 1]. Then, we can feed
into the Hoeffding inequality and obtain the final result.

As shown in Theorem 4, Algorithm 1 is a (ε, δ)-approximation algorithm if the sample size is no less than Equation 3.
Theorem 4. Algorithm 1 is (ε, δ)-approximation if the sample size is no less than

t =
2

ε2
ln
k(n− k)

δ
(3)

where n is the number of nodes, i.e., |V|.

Proof. Suppose we sort the nodes based on their real default probabilities, i.e., {v1, v2, ..., vn}. Then we show the two
conditions in (ε, δ)-approximation hold if we have pvi − pvj > 0 with p(vi)− p(vj) ≥ ε for 1 ≤ i ≤ k < j ≤ n.

• For a node v ∈ R, if p(v) < P k − ε < p(vi)− ε, it means pvi − pv > 0 for i ∈ [1, k]. Therefore, v will not
be selected intoR, which is contradict to the assumption. Thus, the first condition holds.

• For v /∈ R, if v does not belong to the top-k result, the second condition holds naturally. Otherwise, there must
be a node u that does not belong to the top-k result being selected into R. If p(v) ≥ P k + ε ≥ p(u) + ε, it
means pv − pu > 0. Therefore, v should also be selected into the top-k, which is contradict to the assumption.
Thus, the second condition holds.

Theorem 3 shows the theoretical result of bounding the order of a pair of nodes. Since 1 ≤ i ≤ k < j ≤ n, we need to
bound the order of k(n− k) pairs of nodes. By applying union bound and Theorem 3, we have

δ = k(n− k) exp(−tε2/2)

⇒t = 2

ε2
ln
k(n− k)

δ

Therefore, the theorem is correct.

3.2 Optimized Sampling Approach

Based on Theorem 4, Algorithm 1 can return a result with tight theoretical guarantee. However, it still suffers from
some drawbacks, which make it hard to scale for large graphs. Firstly, to bound the quality of returned results, we need
to bound the order of k(n− k) node pairs. The node size n can be treated as the candidate size, which is usually large
in real networks. Therefore, if we can reduce the size of n (i.e., reduce candidate space) and k (i.e., verify some nodes
without estimation), then the sample size can be reduced significantly. Secondly, in each sampled possible world, we
only need to determine whether the candidate node can be influenced or not, i.e., compute hv. If the candidate space
can be greatly reduced, the previous sampling method may explore a lot of unnecessary space.

According to the intuitions above, in this section, novel methods are developed to derive the lower and upper bounds of
the default probability, which are used to reduce the candidate space. In addition, a reverse sampling framework is
proposed in order to reduce the searching cost.

Candidate size reduction. To compute the lower and upper bounds of the default probability, we utilize the equation
in default probability definition, i.e., Equation 1. The idea is that the default probability for each node is in [ps(v), 1]
if no further information is given. By treating each node’s default probability as ps(v) and 1, we can aggregate the
probability over its neighbors to shrink the interval based on Equation 1. Then, with the newly derived lower and upper
bounds for neighbor nodes, we can further aggregate the information and update the bounds. The details of deriving

7

Algorithm 2: Lower Bound Algorithm
Input : G : a given graph, z: the order of bound
Output : pl(v): lower bound of default probability
for i in 1 to z do1

if i = 1 then2
p(v) := ps(v) for each v ∈ V;3
continue;4

for each v in V do5
calculate p(v) by Equitation 1 if its in-neighbors’ default probabilities have been updated in the previous iteration;6

pl(v) := p(v) for all nodes v ∈ V;7
return pl(v) for v ∈ V8

Algorithm 3: Upper Bound Algorithm
Input : G : a given graph, z: the order of bound
Output : pu(v): upper bound of default probability
for i in 1 to z do1

for each vertex v in V do2
if i = 1 then3

calculate p(v) by treating its in-neighbors’ default probabilities as 1;4

else5
calculate p(v) if its in-neighbors’ default probabilities have been updated in the previous iteration;6

pu(v) := p(v) for all nodes v ∈ V;7
return pu(v) for v ∈ V8

lower and upper bounds are shown in Algorithms 2 and 3. The algorithms iteratively use the lower and upper bound
derived in the previous iteration as the current default probability. The order of bound denotes the number of iterations
conducted. In each iteration, we only update the bounds of v’s default probability if there is any change for the default
probability of v’s in-neighbors. Note that, there is a slight difference in the first iteration for the two algorithms, since
by using 1 as the default probability will contribute nothing for the pruning. It is easy to verify that larger order will
lead to tighter bounds. Users can make a trade-off between the efficiency and the tightness of bounds.

Given the lower bound and upper bound derived, we can filter some unpromising candidates and verify some candidates
with large probability. Lemma 1 shows the pruning rules to verify and filter the candidate space.
Lemma 1. Given the upper and lower bounds derived for each node, let Tl and Tu be the k-th largest value in pl(v)
and pu(v), respectively. Then, we have

1) For u ∈ V , u must be in the top-k if pl(u) ≥ Tu.

2) For u ∈ V , u must not be in the top-k if pu(u) < Tl.

Proof. For the first case, suppose a node u with pl(u) ≥ Tu but not being selected in the top-k results, which means
a node must have default probability of at least pl(u) to be selected into the top-k result. Since Tu is the k-th largest
value in pu(v), it means there will be no more than k nodes that satisfy the condition. Therefore, the first case holds.
For the second case, since Tl is the k-th largest value of pl(v), which means P k must be at least Tl. Note that, P k is
default probability of the ranked k-th node in the the ground truth order. Therefore, the second case holds.

Based on Lemma 1, Algorithm 4 shows the details of reducing candidate space. The algorithm takes the derived lower
and upper bounds as input and outputs the candidate nodes B and the number k′ of verified nodes. The verified k′ nodes
will be put into the result set directly. Note that, if we can verify k′ nodes based on the first pruning rule, then we only
need to find top-(k − k′) nodes from the candidate set B. In this case, we reduce both the value k and n of Equation 3
to k − k′ and |B|, respectively.

Reverse sampling approach. Based on Algorithm 4, we can greatly reduce the candidate space, which performance
is verified in our experiments on real-world datasets. In the basic sampling method, it aims to estimate the default
probability for each node. Here, we only need to compute the probability for the candidate nodes. Especially, when the
candidate size is small, the previous sampling method will explore a lot of unnecessary space.

8

Algorithm 4: Candidate Reduction
Input : pu(v)/pl(v): upper and lower bound for each node, k: a positive integer
Output : B: candidates selected, k′: the number of nodes verified
Tl← the k-th largest value in pl(v) ;1
Tu ← the k-th largest value in pu(v) ;2
B := ∅; k′ = 0 ;3
for each v in V do4

if pl(v) ≥ Tu then5
k′ ++;6
insert v into the result set;7
continue;8

if pu(v) ≥ Tl then9
push v into B ;10

return B and k′11

Algorithm 5: Reverse Sampling Algorithm
Input : Gt : a given graph by reverse the direction each edge, B: candidate nodes
Output : hv: for each node v ∈ B in one sample
hv := 0 for all nodes v ∈ V ;1
for each node v in B do2

mark all nodes as unvisited ;3
Q ← {v} ;4
whileQ 6= ∅ do5

u = Q.pop() ;6
if hu = 1 then7

hv := 1 and break ;8

if u is unchecked then9
generate a random number ru in [0, 1] ;10
mark u as checked ;11
if ru 6 ps(u) then12

hu := 1, hv := 1 and break ;13

for each u′ ∈ N(u) do14
if (u′, u) is unchecked then15

generate a random number to mark (u′, u) as survived or not ;16

mark u as visited ;17
for each u′ ∈ N(u) do18

if u′ is unvisited and (u′, u) is survived then19
push u′ intoQ ;20

return hv for nodes in B21

Intuitively, given a sampled possible world, for each candidate node, we only need to verify if it can be reached by a
node with hv = 1. Therefore, we can conduct a reverse traversal from the candidate nodes to see if it can meet the
criteria. The details are shown in Algorithm 5, where Gt is the graph by reversing the direction of each edge in G. Note
that, our reverse sampling method is different from the reverse sampling framework used in influence maximization
problem [18].

The inputs are the graph Gt and candidate set B. After processing a sample, it returns hv for each node v in B. At first,
we set hv = 0 for all the nodes. Then we conduct a breath first search from each node in the candidate set. For each
encountered node and edge, we mark it as checked and store the corresponding information (e.g., survived and hv) in
order to avoid generating random numbers for the same node/edge multiple times. The BFS terminates if it encounters
a node hv with hv = 1 or there is no more node to be explored (Lines 6-8). If it encounters a node with hv = 1, it
means the candidate node is influenced, and vice versa. Through this way, we can greatly reduce the computation cost
by filtering unnecessary searching space. Given sample size t, we repeat the process t times and accumulate the hv
value to estimate the default probability.

9

Reverse sampling based method. By integrating the pruning strategies and the reverse sampling technique, we have
the reverse sampling based algorithm. According to Theorem 5, the approach is (ε, δ)-approximation if the sample size
fulfills Equation 4.
Theorem 5. The reverse sampling based algorithm is (ε, δ)-approximation if the sample size is larger or equal than

t =
2

ε2
ln

(k − k′)(|B| − k + k′)

δ
(4)

Note that, we use the reverse sampling method here because the candidate space is reduced. In addition, it only
accelerate the computation of influenced nodes in a sampled possible world. Based on the developed pruning techniques,
we can verify some results and filter some candidates. To bound the quality of returned results, we need to bound the
order of (k − k′)(|B| − k + k′) pairs.

3.3 Bottom-k Based Approach

Based on the lower and upper bounds derived, we can reduce the candidate space. In addition, by using the reverse
sampling technique, we can reduce the cost of exploring samples. The reverse sampling based algorithm can return a
result with tight theoretical guarantee, which reduces the sample size from Equation 3 to Equation 4. However, in many
real cases, the sample size and computation cost is still large. Intuitively, we only need sufficient samples to obtain a
competitive result. In this section, we derive a method by using the bottom-k technique, which can greatly accelerate
the procedure with competitive top-k results. We first present the idea of finding the top-1 result. Then, we extend the
idea for the top-k scenario.

Finding the top-1 result. In the reverse sampling approach, when we process the samples one by one. We can terminate
the processing, if there is a node that has sufficient statistic. In this paper, we use bottom-k sketch to serve this role. The
idea is that, we first apply the lower and upper bound technique to obtain k′ and B. Let t be sample size computed by
using Equation 4. We assign each sample an id and generate a random hash value in (0, 1) for each of them. Since
we does not materialize the samples, the time complex of generating hash value is only O(t). We sort the samples
in ascending order based on the hash value, and materialize the samples accordingly by using the reverse sampling
framework. For each node v in the candidate set, we record a accumulated value vc. Based on Theorem 6, the node
whose vc reaches bk first is the top-1 result. bk is the threshold selected.
Theorem 6. The node selected by using the above procedure is the top-1 node.

Proof. Suppose node u is the first node that reaches the criteria and the hash value of its bk-th encountered sample is
hbk(u). According to the property of bottom-k sketch, we can estimate the default probability p(u) with bk−1

hbk(u)t
. If v

is the second node that reaches the criteria. We must have hbk(v) > hbk(u). Therefore, the corresponding estimated
value is smaller that of u. The theorem is correct.

Here, we use bk to measure if the statistic is sufficient or not. Even though the bottom-k based method does not offer
tight theoretical guarantee as the previous approaches. Through our experimental evaluation, the bottom-k based
method shows great advantage compared with the others.
Example 3. Reconsider the graph in Figure 3 with k = 1 and bk = 2. Suppose nodes D and E are the candidates in
B. Then, we only need to reverse the graph and conduct the traversal from D and E. For the simplicity, we do not
present the reverse graph here. Figure 3(b) is the first reverse sample. That is, E is default by itself, and D does not
meet any default nodes when back-traversing from D. Therefore, the counter of E is set as 1. Figure 3(c) is the second
sample. Then, the counter of E becomes 2, which meets the bottom-k criterion. Thus, D is the top-k result returned.

Finding the top-k results. To find the top-k, we follow similar manner as that in finding the top-1 result. By extending
Theorem 6, we can stop exploring the samples when there are k− k′ nodes with sufficient statistic. That is, we continue
visiting the samples until there are k − k′ nodes with counters reaching bk. Note that, there may be case when the stop
condition cannot be met after all the samples are processed. Then, the algorithm turns to the reverse based sampling
method, and we just return the k − k′ nodes with the largest estimated value. While, according to the experiments over
real-world datasets, the algorithm can coverage quickly with bk.

Complexity analysis. In this paper, there are two types of samples involved, i.e., basic sample (Algorithm 1) and
reverse sample (Algorithm 5). We use tb and tr to denote the cost of generating a basic sample and a reverse sample,
respectively. To obtain a sample, in the worst case, we need to traverse the whole graph once for both sampling
approaches, which cost is O(m + n). Therefore, for the basic sampling approach (i.e., Algorithm 1), the time

10

Table 2: Details of experimental datasets

Datasets # Nodes # Edges Avg Deg. Max Deg.

Bitcoin 3,783 24,186 6.39 888
Facebook 4,039 88,234 21.85 1,045
Wiki 7,115 103,689 14.57 1,167
P2P 62,586 147,892 2.36 95
Citation 2,617 2,985 1.14 44
Interbank 125 249 1.99 47
Guarantee 31,309 35,987 1.15 14,362
Fraud 14,242 236,706 16.62 85,074

complexity is O((m + n) 2
ε2 ln

k(n−k)
δ + n log n), where ε and δ are the input parameters. For the reverse sampling

based method, the bound computation and candidate reduction phase cost O(z(m+ n)) and O(n log n), respectively.
Thus, the complexity is O(tr

2
ε2 ln

(k−k′)(|B|−k+k′)
δ + z(m + n) + 2n log n). The time complexity of the bottom-k

based method is the same as that of the reverse sampling based approach. This is because, we need to explore all the
samples in the worst case, but it is usually much faster than others in practice.

4 Experiment

In this section, we conduct extensive experiments to evaluate the effectiveness and efficiency of our proposed methods.

4.1 Experiment Setup

Datasets. We conduct the experiments on 3 real-world financial datasets, i.e., Interbank1, Fraud and Guarantee and 5
public benchmark datasets with drastically varying sizes and characteristics. Fraud and Guarantee are our contributed
dataset. The details about the 3 real-world financial datasets are shown as follows.

• Interbank. Interbank networks is generated by the maximum-entropy (ME) approach [19], in which each
node represents a bank and edge corresponds to an interbank loan from the lender bank to the borrow bank.

• Fraud. Credit card fraud networks with 19, 240 nodes and 34, 892 edges is constructed based on credit card
fraud transactions of a major commercial bank. Each edge represents a trade between the consumer and
merchant.

• Guarantee. The guaranteed loans network is from a major commercial bank spanning 4 years. The names of
the customers in the records are encrypted and replaced by IDs. We can access the guarantee relationships,
which denotes an edge between the guarantor to borrower. Besides, in case studies, we also get the basic
profile information such as the enterprise scale, and loan information such as the loan credit.

Besides the real-world financial datasets, we also employ 5 benchmark datasets, which are public available. We
download Citation from network repository2. The others are downloaded from SNAP3. The statistic details of datasets
are shown in Table 2.

Algorithms. We evaluate the following algorithms to demonstrate the performance of following algorithms.

• N (Naive). Algorithm 1 with fixed sample size.

• SN (Naive+Sample). Algorithm 1 with the sample size calculated by Equation 3.

• SR (Sample+Reverse). Algorithm that uses reverse sampling method with candidate set derived with second
rule of Lemma 1.

• BSR (Bound+Sample+Reverse). Optimized sampling method by integrating reverse sampling and bounds
filtering techniques with the sample size calculated by Equation 4.

1https://github.com/carloscinelli/NetworkRiskMeasures
2http://networkrepository.com/
3https://snap.stanford.edu/data/

11

https://github.com/carloscinelli/NetworkRiskMeasures
http://networkrepository.com/
https://snap.stanford.edu/data/

2 4 6 8 10

(a) Fraud

0.70

0.75

0.80

0.85

0.90

0.95

Pr
ec

is
io

n

bk-4 bk-8 bk-16 bk-32 bk-64

2 4 6 8 10

(b) Guarantee

0.70

0.75

0.80

0.85

0.90

0.95

Pr
ec

is
io

n

2 4 6 8 10

(c) Interbank

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io

n

2 4 6 8 10

(d) Citation

0.75

0.80

0.85

0.90

0.95

Pr
ec

is
io

n

k (%) k (%)

Figure 4: Parameter bk tuning for bottom-k
based method

1 2 3 4 5

(a) Fraud

1

2

3

4

5

1 2 3 4 5

(b) Guarantee

1

2

3

4

5

1 2 3 4 5

(c) Interbank

1

2

3

4

5

1 2 3 4 5

(d) Citation

1

2

3

4

5

lower bound orders lower bound orders

up
pe

r b
ou

nd
 o

rd
er

s

up
pe

r b
ou

nd
 o

rd
er

s

up
pe

r b
ou

nd
 o

rd
er

s

up
pe

r b
ou

nd
 o

rd
er

s

lower bound orders lower bound orders

Figure 5: Parameter tuning for the order of
bounds

2 4 6 8 10

(a) Fraud

102Ti
m

e(
s)

2 4 6 8 10

(b) Guarantee

100

Ti
m

e(
s)

2 4 6 8 10

(c) Interbank

100

Ti
m

e(
s)

2 4 6 8 10

(d) Citation

100

Ti
m

e(
s)

2 4 6 8 10

(e) Wiki

100

102

Ti
m

e(
s)

2 4 6 8 10

(f) P2P

102

103

104

Ti
m

e(
s)

2 4 6 8 10

(g) Bitcoin

100Ti
m

e(
s)

2 4 6 8 10

(h) Facebook

100

102

Ti
m

e(
s)

N SN SR BSR BSRBK

k (%) k (%) k (%) k (%)

k (%) k (%) k (%) k (%)

Figure 6: Efficiency evaluation

• BSRBK (Bound+Sample+Reverse+Bottom-k). Bottom-k based method by integrating reverse sampling and
bounds filtering techniques.

Parameters and workload. To evaluate the effectiveness of proposed techniques, the precision is reported. For the
ground truth, we use 20000 sampled possible worlds to obtain the results, which setting is commonly used in related
research [14, 6, 5]. For Fraud and Guarantee datasets, the self-risk and diffusion probability are obtained in our previous
research [20, 15]. For the other datasets, the probability is randomly selected from [0, 1]. For parameter k, we vary it
from 1%|V| to 10%|V|, where |V| is the corresponding graph node size. We set ε = 0.3 and δ = 0.1 for computing the
sample size.

In the experiment, we run all the methods by a server with two Intel E5-2680 CPU, 512GB memory and CentOS v7.2
operation system. In the system implementation, we develop the web backend server by Spring Cloud and frontend
with JavaScript D3.js library. In case studies, CNN-max, crDNN and HGAR are experimented on a GPU server with
two pieces of Telsa-P100 and implemented by Tensorflow.

12

2 4 6 8 10

(a) Fraud

0.7

0.75

0.8

0.85

0.9

0.95

Pr
ec

is
io

n

N
SN
SR
BSR
BSRBK

2 4 6 8 10

(b) Guarantee

0.7

0.75

0.8

0.85

0.9

0.95

Pr
ec

is
io

n

N
SN
SR
BSR
BSRBK

2 4 6 8 10

(c) Interbank

0.75

0.8

0.85

0.9

0.95

1
Pr

ec
is

io
n

N
SN
SR
BSR
BSRBK

2 4 6 8 10

(d) Citation

0.7

0.75

0.8

0.85

0.9

0.95

Pr
ec

is
io

n

N
SN
SR
BSR
BSRBK

k (%) k (%)

k (%) k (%)

Figure 7: Effectiveness evaluation

4.2 Parameter Tuning

In this section, we tune the parameters bk and the order of bounds on 4 datasets, i.e., Citation, Interbank, Fraud and
Guarantee.

Tuning the parameter bk. As analyzed in the paper, the precision of BSRBKshould converge rapidly with the increase
of bk. We vary bk from 4 to 64. The results are shown in Figure 4. Note that bk-X means bk is set to X . With the
increase of bk, the algorithm converges quickly for all the datasets. When bk reaches 8, the drop of performance already
becomes less significant. Thus, in the following experiments, we set bk to 16.

Tuning the order of bounds. Since the tightness of lower and upper bounds may greatly affect the sample size and
computation cost, we conduct the experiments to tune the order of bounds. We vary the order of bounds from 1 to 5 and
set k as 5% of the number of nodes. The candidate size is reported. Figure 5 visualizes the result with heatmaps. The
lighter the color is, the less number of candidates will be. As we can see, the candidate size decreases rapidly at the
beginning, and reach steady when the order reaches 2 for most cases. Therefore, we set the order of upper and lower
bounds to 2 for the following experiments.

4.3 Efficiency Evaluation

To demonstrate the efficiency of proposed techniques, we conduct experiments on all the datasets and report the
response time. The results are shown in Figure 6. In all methods, the computation time gradually increases along with k
except for the naive approach N, because N uses a large fixed sample size. For the other methods, the sample size may
change when k increases. As we can observe, algorithm N is the most time-consuming method, and the algorithm runs
faster when more accelerating techniques involved. SR is better than SN because the reverse sampling technique and
candidate set derived can greatly reduce the sampling cost. BSR is better than SR, since we can reduce the candidate
space and sample size by using the lower and upper bounds derived. BSRBKis better than BSR because of the novel
stop condition used. BSRBKalways outperforms the others and achieves up to 100x acceleration. These observations
strongly proves the advantage of proposed techniques.

4.4 Effectiveness Evaluation

To evaluate the effectiveness of proposed methods, the precision is reported by varying k from 1%|V| to 10%|V|. The
results are shown in Figure 7. Generally, the precision of the 5 methods is very close to each other, and the largest gap
between the naive method N and BSRBKis only 3%. Compared with the speedup in efficiency, the precision difference
is much less noticeable. The naive method N is slightly better than the other methods, because it has used more samples.
SN, SR and BSR report almost the same result, because they obtain the same theoretical guarantee. It should be noted
that for the Interbank dataset, 1%|V| = 1 and all methods successfully detect that node. Therefore, the precision is 1 as

13

Application

Data
Collection

Data
Market

Guarante

ed-loan
Data

Risk Control Center

Rules

Blacklist

Whitelist

Compliance

…

Detection (VulnDS) Evaluation

Monitoring and Management Platform

Scheduling MonitoringQuality Control Meta-data Management.

Tools Platform

Loan Amt

TimeLimit

Quality

Loan Rate

Risk Guarantee

Risk Network

Top k Vulnerable

Modeling

Decision

Statement

Workflow

…

Business
Management

Loan Agent

Evaluator

Administrator

…

Development

Validation

Process
Layer

Extract

Trans-
form

Merge

Aggre-
gation In Memory DB

Access Layer

Operation Management System (Logging, Auditing, Backup and Restore)

Risk Manager

Deployment

U
n

ified
 A

p
p

licatio
n

 In
terface

Loan Data
Warehouse

Graph DBRelational DB

Risk SME Detection

Application LayerRisk Evaluation and Detection LayerPre-processRaw Data

Figure 8: System architecture of VulnDS in a loan management system

shown in Figure 7(c). As observed, the experiment results prove that BSRBKcould achieve significant performance
acceleration while keeping a tolerable precision reduction.

5 Implementation and Case Study

In this section, We present a system, named VulnDS, by integrating the proposed techniques with our current loan
risk control system. The control system is deployed in our collaborated bank, which can evaluate our methods in real
scenarios. We first present the overall architecture for VulnDS, and then describe the details of system implementation.
Finally, we report the interface, observation and case study after system deployment.

5.1 System Implementation and Deployment

Architecture Overview. Figure 8 shows the architecture overview of the VulnDS in a loan management system. We
collect origin data from three upstream: loan data warehouse, data market and external loan data. In the pre-processing
layer, raw records are extracted, merged and aggregated for risk control. We employ the in-memory database to store the
frequent queried data, and graph database to preserve networked relationships, as well as rational DB for conventional
tables. We utilize a monitoring platform for scheduling submitted tasks from the pre-processing and risk control module.
The risk assessment results are consumed by the tools and application platform, which is the main scenario to control
loan risks. Different roles of business users access the system from a unified application interface.

The risk control center consists of three main parts: the rule engine, vulnerable detection system and evaluation module.
Rule engine mainly includes loan blacklist, white list and compliance rules. If a loan passes the rule check, it will be
then processed by our proposed vulnerable detection system. VulnDS assess the self-risk of SME, the risk of guarantee
relationships, and detect the top-k vulnerable nodes by our methods. Evaluation module leverage the output of VulnDS
to quantify the loan grant amount, time limit and interest ratio, etc. Once the bank issue a loan, post-loan process are
activated immediately. All three steps in the risk control center will be employed to evaluate all issued loans regularly.
In our implementation, we detect all loans monthly by the proposed VulnDS in a risk control center.

Implementation Details. Figure 9 shows an overview of the data association, which is extracted by the pre-processing
layer. We employ the internal black and white lists from our collaborated bank. The rules are mainly under the
compliance of the new Basel protocol[21]. In vulnerable detection system, we employ HGAR [10] for self-risk
assessments, p-wkNN [15] to infer the probability of risk guarantee relationships. The proposed methods are utilized
for the final vulnerable SME detection. During implementation, we use the Drools [22] on Apache Flink as the rule
engine, in which the hot data are stored in Redis [23]. We employ neo4j as the graph database, visualize the graph by
open-source software package D3.js and layout ForceAtlas2 [24]. The training model and system implementation are
written in Python, Java, and Scala.

14

Customer Profile

Date
Loan Card ID
Customer ID
Sector
Capital Registered
……

Key: Customer ID

Loan Account Info

Date
Loan Card ID
Customer ID
Loan Contract ID
Guarantee Type
……

Key: Loan Card ID

Loan Account Info

Date
Loan Card ID
Customer ID
Loan Contract ID
Guarantee Type
……

Key: Loan Card ID

Repayment Status

Date
Loan Card ID
Customer ID
Repayment Amount
Repayment Interest
……

Key: Loan Card ID

Repayment Status

Date
Loan Card ID
Customer ID
Repayment Amount
Repayment Interest
……

Key: Loan Card ID

Guarantee Relationship

Start Time
End Time
Guarantee Contract ID
……

 Guarantee Contract ID

Guarantee Relationship

Start Time
End Time
Guarantee Contract ID
……

 Guarantee Contract ID

Default Status

Date
Loan Card ID
Customer ID
Default Amount
Default Interest
……

Key: Loan Card ID

Loan Contract

Date
Customer ID
Loan Contract ID
Guarantee Type
Start Date
End Date
……

Key: Loan Card ID

Loan Contract

Date
Customer ID
Loan Contract ID
Guarantee Type
Start Date
End Date
……

Key: Loan Card ID

Customer Credit

Customer ID
Rating

Key: Customer ID

Customer Credit

Customer ID
Rating

Key: Customer ID

Guarantee Profile

Guarantee Contract ID
Guarantee ID
Amount

Key: Guarantee ID

Guarantee Profile

Guarantee Contract ID
Guarantee ID
Amount

Key: Guarantee ID

Guarantee Contract ID

Date
Loan Contract ID
Guarantee Contract ID
Guarantee ID
Start Date
End Date
……

Guarantee Contract

Figure 9: Overview of data association

Figure 10: UI of deployed loan management system

System Deployment. Our proposed VulnDS is deployed in a loan management system of our collaborated bank.
Figure 10 presents the system interface and main components, where the left part of Figure 10 presents the control and
metric panel, including the risk statistics of each of the loan communities and control menus. The right part of Figure 10
displays the loan status monitoring screen. The node size indicates the delinquent probability of each company, which
is dynamic and changes periodically according to the time window. Thus, risk managers could focus on risky and
dominant companies.

5.2 Case Study for Loan Default Prediction

In this section, we conduct the case studies based on the deployed system. We directly observe labels from real-world
behavior and validate the prediction result with the tagged labels. In the previous research, many machine learning
based methods are developed for loan default prediction. To further demonstrate the performance of proposed methods,
we compare the proposed methods with some baseline approaches, which are designed for the default prediction task
for real-world system. The baseline methods include Wide [25], Wide and Deep [26], CNN-max [27], GBDT [28],
crDNN [29], INDDP [15], HGAR [10]. We also employ betweenness [30], PageRank [31], k-core [32] and influence
maximization (InfMax) [14] methods as baselines. We conduct the experiments over real-world dataset, i.e., Guarantee
dataset, which spans 4 yeas, from 2012 to 2016. As observed, most of the loans are repaid monthly. Hence, we
aggregate the behavior features within one-month time window and mark the delinquency loans as the target label for

15

Table 3: Results of default prediction

AUC(2014) AUC(2015) AUC(2016)

Wide 0.75509 0.77751 0.78195
Wide & Deep 0.76464 0.79825 0.81053
GBDT 0.77263 0.80627 0.81182
CNN-max 0.77645 0.80049 0.81492
crDNN 0.77429 0.79565 0.81054
INDDP 0.79015 0.80927 0.81588
HGAR 0.81310 0.80988 0.81875
Betweenness 0.60649 0.60577 0.60095
PageRank 0.61359 0.61643 0.62475
K-core 0.65551 0.66281 0.66816
InfMax 0.70255 0.70927 0.71132

BSRBK 0.82367 0.82835 0.83709
BSR 0.82539∗∗ 0.83004∗∗ 0.83917∗∗

the month. The records of 2012 are used as the training data. Then, we predict the defaults over the next three years.
For the baseline methods, the training data is used to train the prediction models. For our methods, the training data is
used to train the probabilities involved in the networks, which details are shown in our previous research [15].

The results are shown in Table 3, where AUC (Area Under the Curve) for each year is reported. As we can see, GBDT
and Wide & Deep outperform the Wide model, because of the increase of model capacity. INDDP and HGAR are
shown to be competitive across all the baselines. Betweenness and PageRank are close to each other, which do not
perform satisfactory. InfMax and K-core are much better which are still suboptimal. BSR and BSRBKsurpasses all the
other approaches, which means the graph structure and default diffusion properties are effective for default prediction
tasks. BSR is slightly better than BSRBK, because it can offer tight theoretical guarantee.

6 Related Work

Uncertain graph. The uncertain (probabilistic) graph, where each node or edge may appear with a certain probability,
has been widely used to model graphs with uncertainty in a wide spectrum of graph applications. A large number of
classical graph problems have been studied in the context of probabilistic graphs. For instance, [33] investigates the
distance-constraint reachability problem in probabilistic graph. [4] introduces a framework to address the k nearest
neighbors (kNN) queries on probabilistic graphs. [34] investigate the reliability problem based on conditional probability.
In [5], authors provide a comprehensive comparison between different reliability algorithms. The problem of vulnerable
nodes detection has been investigated in the context of network reliability (e.g., [35, 36, 37]). Nevertheless, their models
are inherently different with ours, and the techniques cannot be trivially applied. The problem investigated in this paper
is similar to the study of node influence under the independent cascade (IC) model [14, 6] in the sense that the influence
of a node can be modeled by possible world semantics. Although a large body of works (e.g., [14, 38, 39, 40]) have
been developed for the problem of influence maximization under the IC model, their proposed techniques cannot be
applied to our problem due to the inherent difference between the two problems. Firstly, the nodes in IC model do not
carry any probability. Secondly, their focus is to select k nodes such that the spread of influence is maximized. While
we aim to find k nodes with largest default probabilities.

Credit evaluation. Consumer credit risk evaluation is often technically addressed in a data-driven fashion and has
been extensively investigated [41, 42]. Since the seminal “Partial Credit” model [43], numerous statistical approaches
have been introduced for credit scoring: logistic regression, k-NN, neural network, and support vector machine. More
recently, [41] presents an in-depth analysis on interpreting the learned knowledge embedded in neural networks by
using explanatory rules, and discusses how to visualize these rules. Researchers combine debt-to-income ratio with
consumer banking transactions and use a linear regression model with time-windowed dataset to predict the default
rates in a short future. They claim an 85% default prediction accuracy and can save costs of between 6% and 25% [44].

Diffusion in finance. The relationship between network structure and financial system risk has been carefully studied
and several insights have been drawn. Network structure has little impact on system welfare, but it is important in
determining systemic risk and welfare in short-term debt [45]. Network theory attracts more attention after the 2008

16

global financial crisis. The crisis brought about by Lehman Brothers infects connected corporations, which is similar
to the 2002 Severe Acute Respiratory Syndrome (SARS) epidemic. Both of them start from small damages, but hit a
networked society and cause serious events [46, 47]. The dynamic network produced by bank overnight funds loans
may be an alert of the crisis [48]. Moreover, research that aims to understand individual behavior and interactions
in the social network has also attracted extensive attention [49, 50]. Although preliminary efforts have been made
using network theory to understand fundamental problems in financial systems [51], there is little work on system risk
analysis in networked-guarantee loans [52].

7 Conclusion

In this paper, we investigate the problem of top-k vulnerable nodes detection over uncertain graphs, which is very
important for risk management in real-world applications. We formally define the problem by considering both self-risk
probability of the nodes and the prorogation probability of defaults among graph nodes. Due to the hardness of the
problem, a sampling based method is developed with tight theoretical guarantee. To scale for large networks, effective
pruning techniques and advanced sampling method are proposed with rigorous theoretical analysis. To further accelerate
the search, a bottom-k based approach is presented. We conduct extensive experiments over real-world datasets to
demonstrate the efficiency and effectiveness of proposed techniques. Moreover, the proposed techniques are integrated
into our loan risk control system, which is deployed in real financial environment. Through case studies, we further
verify the advantages of proposed model.

References

[1] Rong-Hua Li, Qiangqiang Dai, Guoren Wang, Zhong Ming, Lu Qin, and Jeffrey Xu Yu. Improved algorithms for
maximal clique search in uncertain networks. In ICDE, 2019.

[2] Wenjie Zhang, Xuemin Lin, Ying Zhang, Ke Zhu, and Gaoping Zhu. Efficient probabilistic supergraph search.
TKDE, 28(4), 2016.

[3] Paolo Boldi, Francesco Bonchi, Aristides Gionis, and Tamir Tassa. Injecting uncertainty in graphs for identity
obfuscation. PVLDB, 5(11), 2012.

[4] Michalis Potamias, Francesco Bonchi, Aristides Gionis, and George Kollios. K-nearest neighbors in uncertain
graphs. PVLDB, 3(1-2):997–1008, 2010.

[5] Xiangyu Ke, Arijit Khan, and Leroy Lim Hong Quan. An in-depth comparison of st reliability algorithms over
uncertain graphs. PVLDB, 12(8):864–876, 2019.

[6] Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. Influence maximization on social graphs: A survey. TKDE,
30(10), 2018.

[7] Dawei Cheng, Zhibin Niu, and Liqing Zhang. Delinquent events prediction in temporal networked-guarantee
loans. IEEE Transactions on Neural Networks and Learning Systems, 2020.

[8] Ming Jian and Ming Xu. Determinants of the guarantee circles: The case of chinese listed firms. Pacific-Basin
Finance Journal, 20(1):78–100, 2012.

[9] Dinny Mcmahon. Loan ‘guarantee chains’ in china prove flimsy. The Wall Street Journal, 27, 2014.
[10] Dawei Cheng, Yi Tu, Zhen-Wei Ma, Zhibin Niu, and Liqing Zhang. Risk assessment for networked-guarantee

loans using high-order graph attention representation. In IJCAI, pages 5822–5828, 2019.
[11] Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. On the representation and querying of sets of possible

worlds. In SIGMOD, 1987.
[12] Zhibin Niu, Runlin Li, Junqi Wu, Dawei Cheng, and Jiawan Zhang. iconviz: Interactive visual exploration of the

default contagion risk of networked-guarantee loans. In VAST, pages 84–94, 2020.
[13] Dawei Cheng, Xiaoyang Wang, Ying Zhang, and Liqing Zhang. Risk guarantee prediction in networked-loans. In

Christian Bessiere, editor, IJCAI, pages 4483–4489, 2020.

[14] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network.
In SIGKDD, 2003.

[15] Dawei Cheng, Zhibin Niu, Yi Tu, and Liqing Zhang. Prediction defaults for networked-guarantee loans. In 24th
International Conference on Pattern Recognition, pages 361–366, 2018.

[16] Arijit Khan, Francesco Bonchi, Aristides Gionis, and Francesco Gullo. Fast reliability search in uncertain graphs.
In EDBT, pages 535–546, 2014.

17

[17] Edith Cohen and Haim Kaplan. Summarizing data using bottom-k sketches. In Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing, pages 225–234, 2007.

[18] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing social influence in nearly
optimal time. In SODA, pages 946–957, 2014.

[19] Kartik Anand, Ben Craig, and Goetz Von Peter. Filling in the blanks: Network structure and interbank contagion.
Quantitative Finance, 15(4):625–636, 2015.

[20] Kang Fu, Dawei Cheng, Yi Tu, and Liqing Zhang. Credit card fraud detection using convolutional neural networks.
In International Conference on Neural Information Processing, pages 483–490, 2016.

[21] Bernd Engelmann and Robert Rauhmeier. The basel II risk parameters: estimation, validation, stress testing-with
applications to loan risk management. Springer Science & Business Media, 2011.

[22] Ei Ei Thu and Nwe Nwe. Transforming model oriented program into android source code based on drools rule
engine. Journal of Computer and Communications, 5(03):49, 2017.

[23] Ming Xu, Xiaowei Xu, Jian Xu, Yizhi Ren, Haiping Zhang, and Ning Zheng. A forensic analysis method for redis
database based on rdb and aof file. Journal of Computers, 9(11):2538–2544, 2014.

[24] M Jacomy, S Heymann, T Venturini, and M Bastian. Forceatlas2, a figure layout algorithm for handy network
visualization. Sciences Po, 44, 2012.

[25] HB McMahan. Follow-the-regular ized-leader and mil-ror descent: Equivalence theorems and 11 regularization.
Journal of Machine Learning Research Proceedings Trade, 15:525–533, 2011.

[26] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson,
Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recommender systems. In Proceedings of
the 1st Workshop on Deep Learning for Recommender Systems, pages 7–10, 2016.

[27] Lei Zheng, Vahid Noroozi, and Philip S Yu. Joint deep modeling of users and items using reviews for recommen-
dation. In ACM International Conference on Web Search and Data Mining, 2017.

[28] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing
Systems, pages 3146–3154, 2017.

[29] Fei Tan, Xiurui Hou, Jie Zhang, Zhi Wei, and Zhenyu Yan. A deep learning approach to competing risks
representation in peer-to-peer lending. IEEE transactions on neural networks and learning systems, 2018.

[30] Sara Mumtaz and Xiaoyang Wang. Identifying top-k influential nodes in networks. In CIKM, 2017.
[31] Amy N Langville and Carl D Meyer. Deeper inside pagerank. Internet Mathematics, 1(3):335–380, 2004.
[32] Chen Chen, Qiuyu Zhu, Renjie Sun, Xiaoyang Wang, and Yanping Wu. Edge manipulation approaches for k-core

minimization: Metrics and analytics. TKDE, 2021.
[33] Ruoming Jin, Lin Liu, Bolin Ding, and Haixun Wang. Distance-constraint reachability computation in uncertain

graphs. Proceedings of the VLDB Endowment, 4(9):551–562, 2011.
[34] Arijit Khan, Francesco Bonchi, Francesco Gullo, and Andreas Nufer. Conditional reliability in uncertain graphs.

TKDE, 30(11), 2018.
[35] Shudong Li, Lixiang Li, Xinran Liu, and Yixian Yang. Identifying vulnerable nodes of complex networks in

cascading failures induced by node-based attacks. Mathematical Problems in Engineering, 2013:938398, 09 2013.
[36] Arunabha Sen, Anisha Mazumder, Joydeep Banerjee, Arun Das, and Randy Compton. Identification of K most

vulnerable nodes in multi-layered network using a new model of interdependency. In IEEE INFOCOM Workshops,
pages 831–836, 2014.

[37] Hale Cetinay, Karel Devriendt, and Piet Van Mieghem. Nodal vulnerability to targeted attacks in power grids.
Applied Network Science, 3(1):34, 2018.

[38] Xiaoyang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Chen Chen. Bring order into the samples: A novel
scalable method for influence maximization. TKDE, 29(2):243–256, 2017.

[39] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-linear time: A martingale approach.
In SIGMOD, 2015.

[40] Xiaoyang Wang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. Efficient distance-aware influence maximization
in geo-social networks. TKDE, 29(3):599–612, 2016.

[41] Bart Baesens, Rudy Setiono, Christophe Mues, and Jan Vanthienen. Using neural network rule extraction and
decision tables for credit-risk evaluation. Management science, 49(3):312–329, 2003.

18

[42] David J Hand and William E Henley. Statistical classification methods in consumer credit scoring: a review.
Journal of the Royal Statistical Society: Series A (Statistics in Society), 160(3):523–541, 1997.

[43] Geoff N Masters. A rasch model for partial credit scoring. Psychometrika, 47(2):149–174, 1982.
[44] Amir E Khandani, Adlar J Kim, and Andrew W Lo. Consumer credit-risk models via machine-learning algorithms.

Journal of Banking & Finance, 34(11):2767–2787, 2010.
[45] Franklin Allen, Ana Babus, and Elena Carletti. Financial connections and systemic risk. Technical report, National

Bureau of Economic Research, 2010.
[46] Spiros Bougheas and Alan Kirman. Complex financial networks and systemic risk: A review. In Complexity and

Geographical Economics, pages 115–139. 2015.
[47] Dawei Cheng, Zhibin Niu, and Yiyi Zhang. Contagious chain risk rating for networked-guarantee loans. In KDD,

pages 2715–2723, 2020.
[48] Véronique Van Vlasselaer, Jan Meskens, Dries Van Dromme, and Bart Baesens. Using social network knowledge

for detecting spider constructions in social security fraud. In ASONAM, pages 813–820, 2013.
[49] Jukka-Pekka Onnela et al. Complex networks in the study of financial and social systems. Helsinki University of

Technology, 2006.
[50] Jiezhong Qiu, Yixuan Li, Jie Tang, Zheng Lu, Hao Ye, Bo Chen, Qiang Yang, and John E Hopcroft. The lifecycle

and cascade of wechat social messaging groups. In WWW, pages 311–320, 2016.
[51] Wing S Chow and Lai Sheung Chan. Social network, social trust and shared goals in organizational knowledge

sharing. Information & Management, 45(7):458–465, 2008.
[52] Xiangfeng Meng, Yunhai Tong, Xinhai Liu, Yiren Chen, and Shaohua Tan. Netrating: Credit risk evaluation for

loan guarantee chain in china. In Pacific-Asia Workshop on Intelligence and Security Informatics, pages 99–108,
2017.

19

	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Bottom-k Sketch

	3 Solutions
	3.1 Basic Sampling Approach
	3.2 Optimized Sampling Approach
	3.3 Bottom-k Based Approach

	4 Experiment
	4.1 Experiment Setup
	4.2 Parameter Tuning
	4.3 Efficiency Evaluation
	4.4 Effectiveness Evaluation

	5 Implementation and Case Study
	5.1 System Implementation and Deployment
	5.2 Case Study for Loan Default Prediction

	6 Related Work
	7 Conclusion

